CHAPTER-5

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Structure

5.1 Non-linear First Order PDE - Complete integrals
5.2 Envelopes
5.3 Characteristics
5.4 Hamilton Jacobi equations (Calculus of variations, Hamilton ODE)
5.5 Legendre Transform
5.6 Hopf-Lax Formula
5.7 Weak Solutions and Uniqueness
5.1 Definition: Let U is an open sunset of $R^{n}, x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ and let $u: \bar{U} \subseteq R^{n} \rightarrow R$. A general form of first-order partial differential equation for $u=u(x)$ is given by

$$
\begin{equation*}
F(D u, u, x)=0 \tag{1}
\end{equation*}
$$

where $F: R^{n} \times R \times \bar{U} \rightarrow R$ is a given function, $D u$ is the vector of partial derivatives of u and $u(x)$ is the unknown function.

We can write equation (1) as

$$
\begin{aligned}
& F=F(p, z, x) \\
& \quad=F\left(p_{1,} p_{2} \ldots, p_{n,}, z, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

for $p \in R^{n}, \quad z \in R, x \in U$.
Here, " p " is the name of the variable for which we substitute the gradient $D u$ and " z " is the variable for which we substitute $u(x)$. We also assume hereafter that F is smooth, and set

$$
\begin{aligned}
& D_{p} F=\left(F_{p_{1}}, F_{p_{2}}, \ldots, F_{p_{n}}\right) \\
& D_{z} F=F_{z} \\
& D_{x}=\left(F_{x_{1}}, F_{x_{2}}, \ldots, F_{x_{n}}\right)
\end{aligned}
$$

Remark: The PDE $F(D u, u, x)=0$ is usually accompanied by a boundary condition of the form $u=g$ on ∂U. Such a problem is usually called a boundary value problem. Here our main concern is to search solution for the non-linear PDE

Complete Integral: Consider the non-linear first order PDE

$$
\begin{equation*}
F(D u, u, x)=0 \tag{1}
\end{equation*}
$$

Suppose first that $A \subset R^{n}$ is an open set. Assume for each parameter $a=\left(a_{1}, \ldots, a_{n}\right) \in A$, we have a C^{2} solution

$$
\begin{equation*}
u=u(x ; a) \tag{2}
\end{equation*}
$$

of the PDE (1) and

$$
\left(D_{a} u, D_{x a}^{2} u\right)=\left[\begin{array}{cccc}
u_{a_{1}} & u_{x_{1} a_{1}} & \ldots & u_{x_{n} a_{1}} \tag{3}\\
u_{a_{2}} & u_{x_{1} a_{2}} & \ldots & u_{x_{n} a_{2}} \\
\ldots & \ldots & \ldots & \ldots \\
u_{a_{n}} & u_{x_{1} a_{n}} & \ldots & u_{x_{n} a_{n}}
\end{array}\right]
$$

A C^{2} function $u=u(x ; a)$ (shown in equation (2)) is called a complete integral in $U \times A$ provided
(i) $u(x ; a)$ solves the $\operatorname{PDE}(1)$ for each $a \in A$
(ii) $\operatorname{rank}\left(D_{a} u, D_{x a}^{2} u\right)=n \quad(x \in U, a \in A)$

Note: Condition (ii) ensures $u(x ; a)$ "depends on all the n independent parameters a_{1}, \ldots, a_{n} ".
Example 1: The eikonal equation,

$$
\begin{equation*}
|D u|=1 \tag{4}
\end{equation*}
$$

Introduced by Hamilton in 1827 is an approximation to the equations which govern the behaviour of light travelling through varying materials. A solution, depending on parameters $\|a\|=1, b \in R$ is

$$
\begin{equation*}
u(x ; a, b)=a \cdot x+b \tag{5}
\end{equation*}
$$

Example 2: The Clairaut's equation is the PDE

$$
\begin{equation*}
x \cdot D u+f(D u)=u \tag{6}
\end{equation*}
$$

where $f: R^{n} \rightarrow R$ is given.
A complete integral is

$$
\begin{equation*}
u(x ; a)=a \cdot x+f(a) \quad(x \in U) \tag{7}
\end{equation*}
$$

for $a \in R^{n}$.

Example 3: The Hamilton-Jacobi Equation

$$
\begin{equation*}
u_{t}+H(D u)=0 \tag{8}
\end{equation*}
$$

with $H: R^{n} \rightarrow R$ is given and $u=u(x, t): R^{n} \times R \rightarrow R$.A solution depending on parameters $a \in R^{n}, b \in R$ is

$$
\begin{equation*}
u(x, t ; a, b)=a \cdot x-t H(a)+b \tag{9}
\end{equation*}
$$

where $t \geq 0$.
Remark: For simplicity, in most of what follows, we restrict to $n=2$. We call the two variables x, y. Thus, we reduce to the case

$$
\begin{equation*}
F\left(u_{x}, u_{y}, u, x, y\right)=0 \tag{7}
\end{equation*}
$$

In this case, the solution $u=u(x, y)$ is a surface in R^{3}. The normal direction to the surface at each point is given by the vector $\left(u_{x}, u_{y},-1\right)$.

5.2 Envelope

Definition: Let $u=u(x ; a)$ be a C^{1} function of x and U and A are open subsets of R^{n}. Consider the vector equation

$$
\begin{equation*}
D_{a} u(x ; a)=0 \quad(x \in U, a \in A) \tag{1}
\end{equation*}
$$

Suppose that we can solve (1) for the parameter a as a C^{1} function of x,

$$
\begin{equation*}
a=\phi(x) \tag{2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
D_{a} u(x ; \phi(x))=0 \quad(x \in U) \tag{3}
\end{equation*}
$$

We can call

$$
\begin{equation*}
v(x):=u(x ; \phi(x)) \quad(x \in U) \tag{4}
\end{equation*}
$$

is the envelope of the function $\{u(. ; a)\}_{a \in A}$
Remarks: We can build new solution of nonlinear first order PDE by forming envelope and such types of solutions are called singular integral of the given PDE.

Theorem: Construction of new solutions

Suppose for each $a \in A$ as above that $u=u(. ; a)$ solves the partial differential equation

$$
\begin{equation*}
F(D u, u, x)=0 \tag{5}
\end{equation*}
$$

Assume further that the envelope v, defined (3) and (4) above, exists and is a C^{1} function. Then v solves (5) as well.

Proof: We have $v(x)=u(x ; \phi(x))$

$$
\begin{aligned}
v_{x_{i}}(x) & =u_{x_{i}}(x ; \phi(x))+\sum_{j=1}^{m} u_{a_{j}}(x, \phi(x)) \phi_{x_{i}}^{j}(x) \\
& =u_{x_{i}}(x ; \phi(x))
\end{aligned}
$$

for $i=1, \ldots, n$.
Hence for each $x \in U$,

$$
F(D v(x), v(x), x)=F(D u(x ; \phi(x)), u(x ; \phi(x)), x)=0
$$

Note: The geometric idea is that for each $x \in U$, the graph of \boldsymbol{V} is tangent to the graph of $u(. ; a)$ for $a=\phi(x)$. Thus $D v=D_{x} u(; ; a)$ at x, for $a=\phi(x)$.

Example 4: Consider the PDE

$$
\begin{equation*}
u^{2}\left(1+|D u|^{2}\right)=1 \tag{6}
\end{equation*}
$$

The complete integral is

$$
u(x, a)= \pm\left(1-|x-a|^{2}\right)^{1 / 2} \quad(|x-a|<1)
$$

We find that

$$
D_{a} u=\frac{\mp(x-a)}{\left(1-|x-a|^{2}\right)^{1 / 2}}=0
$$

provided $a=\phi(x)=x$.
Thus $v \equiv \pm 1$ are singular integrals of (6).

5.3 Characteristics

Theorem: Structure of Characteristics PDE

Let $u \in C^{2}(U)$ solves the non-linear PDE

$$
F(D u, u, x)=0 \text { in } U
$$

Assume $\bar{x}()=.\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ solves the ODE $\dot{\bar{x}}=D_{p} F(\overline{p(s)}, z(s), \overline{x(s)})$, where
$\overline{p(s)}=\operatorname{Du}(\bar{x}()),. \quad z(s)=u(\bar{x}()$.
Then $\bar{p}($.) solves the ODE.
$\dot{\bar{p}}=-D_{x} F(\overline{p(s)}, z(s), \overline{x(s)})-D_{z} F(\overline{p(s)}, z(s), \overline{x(s)}) \overline{p(s)}$ (3)
and $z(s)$ solves the ODE $\dot{z}(s)=D_{p} F(\overline{p(s)}, z(s), \overline{x(s)}) \cdot \overline{p(s)}$ for those s such that $\bar{x}(s) \in U$
Proof: Consider nonlinear first order PDE

$$
\begin{equation*}
F(D u, u, x)=0 \text { in } U \tag{1}
\end{equation*}
$$

subject now to the boundary condition

$$
\begin{equation*}
u=g \quad \text { on } \Gamma \tag{2}
\end{equation*}
$$

where $\Gamma \subseteq \partial U$ and $g: \Gamma \rightarrow R$ are given.
We suppose that F and g are smooth functions. Now we derive the method of characteristics which solves (1) and (2) by converting PDE into appropriates system of ODE. Initially, we would like to calculate $u(x)$ by finding some curve lying within U , connecting x with a point $x_{0} \in \Gamma$ and along which we can calculate u. Since equation (2) says $u=g$ on Γ. So we know the value of u at one end x_{0} and we hope then to able to find the value of u all along the curve, and also at the particular point x.
Let us suppose the curve is described parametrically by the function

$$
\bar{x}(s)=\left(x^{1}(s), \ldots, x^{n}(s)\right), \text { the parameter s lying in some subinterval of } R
$$

Assuming u is a C^{2} solution of (1), we define

$$
\begin{equation*}
z(s)=u(\bar{x}(s)) \tag{3}
\end{equation*}
$$

Set

$$
\begin{equation*}
\bar{p}(s)=D u(\bar{x}(s)) \tag{4}
\end{equation*}
$$

i.e.

$$
\bar{p}(s)=\left(p^{1}(s), \ldots, p^{n}(s)\right), \text { where }
$$

$$
\begin{equation*}
p^{i}(s)=u_{x_{i}}(\bar{x}(s)) \quad(i=1, \ldots, n) . \tag{5}
\end{equation*}
$$

So $z($.$) gives the values of u$ along the curve and $\bar{p}($.$) records the values of the gradient D u$.
First we differentiate (5)

$$
\begin{equation*}
\dot{p}^{i}(s)=\sum_{j=1}^{n} u_{x_{i} x_{j}}(\bar{x}(s)) \dot{x}^{j}(s) \tag{6}
\end{equation*}
$$

where $\cdot=\frac{d}{d s}$
We can also differentiate the PDE (1) with respect to x

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\partial F}{\partial p_{j}}(D u, u, x) u_{x_{j} x_{i}}(\bar{x}(s)) \dot{x}^{j}(s)+\frac{\partial F}{\partial z}(D u, u, x) u_{x_{i}}+\frac{\partial F}{\partial x_{i}}(D u, u, x)=0 \tag{7}
\end{equation*}
$$

We set

$$
\begin{equation*}
\dot{x}^{j}(s)=\frac{\partial F}{\partial p_{j}}(\bar{p}(s), z(s), \bar{x}(s)) \quad(j=1,2, \ldots, n) \tag{8}
\end{equation*}
$$

Assuming (8) holds, we evaluate (7) at $x=\bar{x}(s)$ and using equations (3) and (4), we have the identity
$\sum_{j=1}^{n} \frac{\partial F}{\partial p_{j}}(\bar{p}(s), z(s), \bar{x}(s)) u_{x_{i} x_{j}}(\bar{x}(s))+\frac{\partial F}{\partial z}(\bar{p}(s), z(s), \bar{x}(s)) p^{i}(s)+\frac{\partial F}{\partial x_{i}}(\bar{p}(s), z(s), \bar{x}(s))=0$ Put this expression and (8) into (6)

$$
\begin{equation*}
\dot{p}^{i}(s)=-\frac{\partial F}{\partial x_{i}}(\bar{p}(s), z(s), \bar{x}(s))-\frac{\partial F}{\partial z}(\bar{p}(s), z(s), \bar{x}(s)) p^{i}(s) \tag{9}
\end{equation*}
$$

Lastly, we differentiate (3)

$$
\begin{equation*}
\dot{z}(s)=\sum_{j=1}^{n} \frac{\partial u}{\partial x_{j}}(\bar{x}(s)) \dot{x}^{j}(s)=\sum_{j=1}^{n} p^{j}(s) \frac{\partial F}{\partial p_{j}}(\bar{p}(s), z(s), \bar{x}(s)) \tag{10}
\end{equation*}
$$

the second equality holding by (5) and (8). We summarize by rewriting equation (8)-(10) in vector notation $\dot{\bar{p}}(s)=-D_{x} F(\bar{p}(s), z(s), \bar{x}(s))-D_{x} F(\bar{p}(s), z(s), \bar{x}(s)) \cdot \bar{p}(s)$
$\dot{z}(s)=D_{p} F(\bar{p}(s), z(s), \bar{x}(s)) \cdot \bar{p}(s)$
$\dot{\bar{x}}(s)=D_{p} F(\bar{p}(s), z(s), \bar{x}(s))$
This system of $2 \mathrm{n}+1$ first order ODE comprises the characteristic equation of the nonlinear first order PDE (1).
The functions $\bar{p}()=.\left(p^{1}(),. \ldots, p^{n}().\right), z(),. \bar{x}()=.\left(x^{1}(),. \ldots, x^{n}().\right)$ are called the characteristics.
Remark: The characteristics ODE are truly remarkable in that they form a closed system of equations for $\bar{x}(),. z()=.u(\bar{x}()$.$) and \bar{p}()=.D u(\bar{x}()$.$) , whenever u$ is a smooth solution of the general nonlinear PDE(1). We can use $X(s)$ in place of $\bar{x}(s)$.

Now we discuss some special cases for which the structure of characteristics equations is especially simple.
(a) Article

Let us consider the PDE of the form $F(D u, u, x)=0$ to be linear and homogeneous and thus has the form

$$
\begin{equation*}
F(D u, u, x)=b(x) \cdot D u(x)+c(x) u(x)=0 \quad(x \in U) \tag{1}
\end{equation*}
$$

Equation (1) can be written as

$$
F(p, z, x)=b(x) \cdot p+c(x) z
$$

So characteristics equations are

$$
\dot{\bar{x}}(s)=D_{p} F=b(x)
$$

$$
=b(\bar{x}(s)) \quad(\text { From last expression })
$$

and

$$
\begin{aligned}
\dot{z}(s)=D_{p} F \cdot \bar{p}= & b(\bar{x}(s)) \cdot \bar{p}(s) \quad \text { (From last expression) } \\
& =-c(\bar{x}(s)) z(s)
\end{aligned}
$$

Thus

$$
\left\{\begin{array}{c}
\dot{\bar{x}}(s)=b(\bar{x}(s)) \tag{2}\\
\dot{z}(s)=-c(\bar{x}(s)) z(s)
\end{array}\right.
$$

comprise the characteristics equations for the linear first order PDE(1).
Example 5: Solve two dimensional system

$$
\left\{\begin{array}{c}
x_{1} u_{x_{2}}-x_{2} u_{x_{1}}=u \text { in } U \tag{3}\\
u=g \quad \text { on } \Gamma
\end{array}\right.
$$

where U is the quadrant $\left\{x_{1}>0, x_{2}>0\right\}$ and $\Gamma=\left\{x_{1}>0, x_{2}=0\right\} \subseteq \partial U$.
Solution: Comparing (3) with (1), we have

$$
\begin{aligned}
& F(D u, u, x)=x_{1} u_{x_{2}}-x_{2} u_{x_{1}}-u=0 \\
& \Rightarrow\left(-x_{2}, x_{1}\right) \cdot\left(u_{x_{1}}, u_{x_{2}}\right)-u=0
\end{aligned}
$$

We get,

Now

$$
b(\bar{x}(s))=\left(-x_{2}, x_{1}\right), \quad c(\bar{x}(s))=-1
$$

$$
b(\bar{x}(s))=\left(b_{1}(x), b_{2}(x)\right)
$$

$$
\begin{gathered}
=\left(-x_{2}, x_{1}\right) \\
\Rightarrow b_{1}(x)=-x_{2}, b_{2}(x)=x_{1}
\end{gathered}
$$

The characteristics equations are

$$
\dot{X}(s)=b(X(s))
$$

and

$$
\dot{z}(s)=-c(X(s)) z(s)
$$

Therefore

$$
\begin{gather*}
\dot{z}(s)=z(s) \\
\dot{X}(s)=\left(-x_{2}(s), x_{1}(s)\right) \\
\Rightarrow\left(\dot{x}_{1}(s), \dot{x}_{2}(s)\right)=\left(-x_{2}(s), x_{1}(s)\right) \\
\Rightarrow \dot{x}_{1}(s)=-x_{2}(s) \text { and } \dot{x}_{2}(s)=x_{1}(s) \tag{4}
\end{gather*}
$$

Now

$$
\begin{aligned}
& \ddot{x}_{1}(s)=-\dot{x}_{2}(s)=-x_{1}(s) \\
\Rightarrow & \ddot{x}_{1}(s)+x_{1}(s)=0
\end{aligned}
$$

Auxiliary equation is $D^{2}+1=0$

$$
\begin{align*}
& \Rightarrow D= \pm i \\
& \Rightarrow x_{1}(s)=c_{1} \cos s+c_{2} \sin s \tag{5}
\end{align*}
$$

So

$$
\begin{equation*}
\dot{x}_{2}(s)=c_{1} \cos s+c_{2} \sin s \tag{6}
\end{equation*}
$$

Integrate (5) w.r.t.s

$$
\begin{equation*}
x_{2}(s)=c_{1} \sin s-c_{2} \cos s+c_{3} \tag{7}
\end{equation*}
$$

From (5), we have

$$
\begin{equation*}
\dot{x}_{1}(s)=-c_{1} \sin s+c_{2} \cos s \tag{8}
\end{equation*}
$$

Comparing (4) and (8)

$$
\begin{align*}
-x_{2}(s) & =-c_{1} \sin s+c_{2} \cos s \\
\Rightarrow & x_{2}(s)=c_{1} \sin s-c_{2} \cos s \tag{9}
\end{align*}
$$

From (7) and (9)

$$
c_{3}=0
$$

Therefore

$$
\begin{equation*}
x_{2}(s)=c_{1} \sin s-c_{2} \cos s \tag{10}
\end{equation*}
$$

Taking $s=0$ in (10)

$$
\begin{aligned}
& x_{2}(0)=-c_{2} \\
\Rightarrow & c_{2}=0
\end{aligned}
$$

$$
\left[\Gamma=\left\{\left(x_{1}(s), x_{2}(s)\right) \mid x_{2}=0 \text { at } \quad s=0\right\}\right]
$$

Therefore

$$
\begin{equation*}
x_{1}(s)=c_{1} \cos s \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}(s)=c_{1} \sin s \tag{12}
\end{equation*}
$$

Put $s=0$ in (11)

$$
x_{1}(0)=c_{1}
$$

Let $x^{0}=x_{1}(0)=c_{1}$
Put value of $c_{1}=x^{0}$ in (11) and (12)

$$
\begin{aligned}
& x_{1}(s)=x^{0} \cos s \\
& x_{2}(s)=x^{0} \sin s
\end{aligned}
$$

Also we have

$$
\begin{aligned}
& \dot{z}(s)=z(s) \\
& \Rightarrow \frac{d z}{d s}=z(s)
\end{aligned}
$$

Integrating w.r.t.s

$$
\begin{aligned}
& \log z=s+\log z^{0} \\
& \Rightarrow \log \frac{z}{z^{0}}=s \\
& \Rightarrow z=z^{0} e^{s} \\
& \Rightarrow z(0)=z^{0}
\end{aligned}
$$

Therefore

$$
z(s)=z(0) e^{s}
$$

Also

$$
\begin{gather*}
u=g \text { on } \Gamma \\
\Rightarrow u(x(s), 0)=g\left(x_{1}(s)\right) \tag{13}
\end{gather*}
$$

We know that $\quad u(x(s))=z(s)$

So

$$
\begin{align*}
& u\left(x_{1}(s), x_{2}(s)\right)=z(s) \\
\Rightarrow & u\left(x_{1}(0), 0\right)=z(0)=z^{0} \tag{14}
\end{align*}
$$

Put (14) in (13)

$$
z(s)=g\left(x^{0}\right) e^{s}
$$

Thus we have

$$
x_{1}(s)=c_{1} \cos s=x^{0} \cos s
$$

and

$$
x_{2}(s)=c_{1} \sin s=x^{0} \sin s
$$

and

$$
z(s)=g\left(x^{0}\right) e^{s}
$$

Now select $\mathrm{s}>0$ and $x^{0}>0$, so that

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)=\left(x_{1}(s), x_{2}(s)\right)=\left(x^{0} \cos s, x^{0} \sin s\right) \\
& \Rightarrow x_{1}=x^{0} \cos s \text { and } \quad x_{2}=x^{0} \sin s
\end{aligned}
$$

Consider,

$$
\begin{aligned}
& x_{1}^{2}+x_{2}^{2}=x^{0^{2}}\left(\sin ^{2} s+\cos ^{2} s\right)=x^{0^{2}} \\
& \Rightarrow \sqrt{x_{1}^{2}+x_{2}^{2}}=x^{0}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \tan s=\frac{x_{2}}{x_{1}} \\
& \Rightarrow s=\tan ^{-1}\left(\frac{x_{2}}{x_{1}}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& u(x(s))=z(s)=g\left(x^{0}\right) e^{s} \\
& \Rightarrow u(x(s))=g\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right) e^{\arctan \left(\frac{x_{2}}{x_{1}}\right)}
\end{aligned}
$$

which is the required solution.

(b) Article

A quasilinear PDE is of the form

$$
\begin{equation*}
F(D u, u, x)=b(x, u(x)) \cdot D u(x)+c(x, u(x))=0 \tag{1}
\end{equation*}
$$

Equation (1) can be written as

$$
F(p, z, x)=b(x, z) \cdot p+c(x, z)
$$

Now

$$
D_{p} F=b(x, z)
$$

Thus the characteristic equations becomes

$$
\dot{X}(s)=D_{p} F=b(X(s), z(s))
$$

and

$$
\begin{aligned}
\dot{z}(s)= & D_{p} F \cdot \bar{p} \\
& =b(X(s), z(s)) \cdot \bar{p}(s) \\
& =-c(X(s), z(s))
\end{aligned}
$$

Consequently

$$
\left\{\begin{array}{l}
\dot{X}(s)=b(X(s), z(s)) \tag{2}\\
\dot{z}(s)=-c(X(s), z(s))
\end{array}\right.
$$

are the characteristic equations for the quasilinear first order PDE (1).
Example 6: Consider a boundary-value problem for a semilinear PDE

$$
\left\{\begin{array}{c}
u_{x_{1}}+u_{x_{2}}=u^{2} \text { in } U \tag{3}\\
u=g \quad \text { on } \Gamma
\end{array}\right.
$$

where U is half-space $\left\{x_{2}>0\right\}$ and $\Gamma=\left\{x_{2}=0\right\}=\partial U$.
Solution: Comparing (3) with (1), we have

$$
b=(1,1) \text { and } c=-z^{2}
$$

Then (2) becomes

$$
\left\{\begin{array}{c}
\dot{x}^{1}=1, \dot{x}^{2}=1 \\
\dot{z}=z^{2}
\end{array}\right.
$$

Consequently

$$
\left\{\begin{array}{c}
x^{1}(s)=x^{0}+s, x^{2}(s)=s \\
z(s)=\frac{z^{0}}{1-s z^{0}}=\frac{g\left(x^{0}\right)}{1-s g\left(x^{0}\right)}
\end{array}\right.
$$

where $x^{0} \in R, s \geq 0$, provided the denominator is not zero.
Fix a point $\left(x_{1}, x_{2}\right) \in U$. We select $s>0$ and $x^{0} \in R$, so that $\left(x_{1}, x_{2}\right)=\left(x^{1}(s), x^{2}(s)\right)=\left(x^{0}+s, s\right)$
i.e. $x^{0}=x_{1}-x_{2}, s=x_{2}$.

Then

$$
\begin{aligned}
u\left(x_{1}, x_{2}\right)= & u\left(x^{1}(s), x^{2}(s)\right)=z(s)=\frac{g\left(x^{0}\right)}{1-\operatorname{sg}\left(x^{0}\right)} \\
& =\frac{g\left(x_{1}-x_{2}\right)}{1-x_{2} g\left(x_{1}-x_{2}\right)}, 1-x_{2} g\left(x_{1}-x_{2}\right) \neq 0
\end{aligned}
$$

which is the required solution.
(c) In this case, we will discuss about characteristics equation of fully nonlinear PDE.

Example 7: Consider the fully nonlinear problem

$$
\left\{\begin{array}{r}
u_{x_{1}} u_{x_{2}}=u \text { in } U \tag{1}\\
u=x_{2}^{2} \text { on } \Gamma
\end{array}\right.
$$

where $U=\left\{x_{1}>0\right\}, \Gamma=\left\{x_{1}=0\right\}=\partial U$
Here $F(p, z, x)=p_{1} p_{2}-z$. Then the characteristic equations becomes

$$
\left\{\begin{array}{c}
\dot{p}^{1}=p^{1}, \dot{p}^{2}=p^{2} \\
\dot{z}=2 p^{1} p^{2} \\
\dot{x}^{1}=p^{2}, \dot{x}^{2}=p^{1}
\end{array}\right.
$$

We integrate these equations and we find

$$
\left\{\begin{array}{c}
x^{1}(s)=p_{2}^{0}\left(e^{s}-1\right), x^{2}(s)=x^{0}+p_{1}^{0}\left(e^{s}-1\right) \\
z(s)=z^{0}+p_{1}^{0} p_{2}^{0}\left(e^{2 s}-1\right) \\
p^{1}(s)=p_{1}^{0} e^{s}, p^{2}(s)=p_{2}^{0} e^{s}
\end{array}\right.
$$

Since $u=x_{2}^{2}$ on $\Gamma, p_{2}^{0}=u_{x_{2}}\left(0, x^{0}\right)=2 x^{0}$.
Therefore, the $\operatorname{PDE} u_{x_{1}} u_{x_{2}}=u$ itself implies $p_{1}^{0} p_{2}^{0}=z^{0}=\left(x^{0}\right)^{2}$, and so $p_{1}^{0}=\frac{x^{0}}{2}$.
Thus we have,

$$
\left\{\begin{array}{c}
x^{1}(s)=2 x^{0}\left(e^{s}-1\right), x^{2}(s)=\frac{x^{0}}{2}\left(e^{s}+1\right) \\
z(s)=\left(x^{0}\right)^{2} e^{2 s} \\
p^{1}(s)=\frac{x^{0}}{2} e^{s}, p^{2}(s)=2 x^{0} e^{s}
\end{array}\right.
$$

Fix a point $\left(x_{1}, x_{2}\right) \in U$. Choose s and x^{0} so that $\left(x_{1}, x_{2}\right)=\left(x^{1}(s), x^{2}(s)\right)=\left(2 x^{0}\left(e^{s}-1\right), \frac{x^{0}}{2}\left(e^{s}+1\right)\right)$ and so

$$
\begin{aligned}
u\left(x_{1}, x_{2}\right) & =u\left(x^{1}(s), x^{2}(s)\right)=z(s)=\left(x^{0}\right)^{2} e^{2 s} \\
& =\frac{\left(x_{1}+4 x_{2}\right)^{2}}{16}
\end{aligned}
$$

Exercise:

1. Find the characteristics of the following equations:
(a) $x_{1} u_{x_{1}}+x_{2} u_{x_{2}}=2 u, u\left(x_{1}, 1\right)=g\left(x_{1}\right)$
(b) $u_{t}+b . D u=f \quad$ in $\quad R^{n} \times(0, \infty), b \in R^{n}, f=f(x, t)$
2. Prove that the characteristics for the Hamiltonian-Jacobi equation

$$
u_{t}+H(D u, x)=0
$$

are

$$
\begin{aligned}
& \dot{\bar{p}}(s)=-D_{x} H(\bar{p}(s), \bar{x}(s)) \\
& \dot{z}(s)=D_{p} H(\bar{p}(s), \bar{x}(s)) \cdot \bar{p}(s)-H(\bar{p}(s), \bar{x}(s)) \\
& \dot{\bar{x}}(s)=D_{p} H(\bar{p}(s), \bar{x}(s))
\end{aligned}
$$

5.4 Hamilton-Jacobi Equation

The initial-value problem for the Hamilton-Jacobi equation is

$$
\left\{\begin{array}{c}
u_{t}+H(D u)=0 \text { in } R^{n} \times(0, \infty) \\
u=g \quad \text { on } R^{n} \times\{t=0\}
\end{array}\right.
$$

Here $u: R^{n} \times[0, \infty) \rightarrow R$ is the unknown, $u=u(x, t)$, and $D u=D_{x} u=\left(u_{x_{1}}, \ldots, u_{x_{n}}\right)$. The Hamiltonian $H: R^{n} \rightarrow R$ and the initial function $g: R^{n} \rightarrow R$ are given.

Note: Two characteristic equations associated with the Hamilton-Jacobi PDE

$$
u_{t}+H(D u, x)=0
$$

are Hamilton's ODE

$$
\left\{\begin{array}{l}
\dot{\bar{x}}=D_{p} H(\bar{p}(s), \bar{x}(s)) \\
\dot{\bar{p}}=-D_{x} H(\bar{p}(s), \bar{x}(s))
\end{array}\right.
$$

which arise in the classical calculus of variations and in mechanics.

5.4.1 Derivation of Hamilton's ODE from a Variational Principle (Calculus of Variation)

Article: Suppose that $L: R^{n} \times R^{n} \rightarrow R$ is a given smooth function, which is called Lagrangian.
We write

$$
L=L(q, x)=L\left(q_{1}, \ldots, q_{n}, x_{1}, \ldots, x_{n}\right)
$$

and

$$
\left\{\begin{array}{l}
D_{q} L=\left(L_{q_{1}} \ldots L_{q_{n}}\right) \\
D_{x} L=\left(L_{x_{1}} \ldots L_{x_{n}}\right)
\end{array}\right.
$$

Where $q, x \in R^{n}$
For any two fix points $x, y \in R^{n}$ and a time $t>0$ and we introduce the action functional

$$
\begin{equation*}
I[\bar{w}(.)]=\int_{0}^{t} L(\dot{\bar{w}}(s), \bar{w}(s)) d s \tag{2}
\end{equation*}
$$

where the functions $\bar{w}()=.\left(w^{1}(),. w^{2}(),. \ldots, w^{n}().\right)$ belonging to the admissible class

$$
A=\left\{\bar{w}(.) \in C^{2}\left([0, t] ; R^{n}\right) \mid \bar{w}(0)=y, \bar{w}(t)=x\right\}
$$

Thus, a C^{2} curve $\bar{w}($.$) belongs to A$ if it starts at the point y at time 0 and reaches the point $x_{\text {at }}$ time t . According to the calculus of variations, we shall find a parametric curve $\bar{x}(.) \in A$ such that

$$
\begin{equation*}
I[\bar{x}(.)]=\min _{\bar{w}(.) \in A} I[\bar{w}(.)] \tag{3}
\end{equation*}
$$

i.e., we are seeking a function $\bar{x}($.$) which minimizes the functional I[$.$] among all admissible candidates$ $\bar{w}(.) \in A$.

5.4.2 Theorem: Euler-Lagrange Equations

Prove that any minimizer $\bar{x}(.) \in A$ of $I[\bullet]$ solves the system of Euler-Lagrange equations

$$
\begin{equation*}
-\frac{d}{d s}\left(D_{q} L(\dot{\bar{x}}(s), \bar{x}(s))\right)+D_{x} L(\dot{\bar{x}}(s)) \quad(0 \leq s \leq t) \tag{4}
\end{equation*}
$$

Proof: Consider a smooth function $\bar{v}:[0, t] \rightarrow R^{n}$ satisfying

$$
\begin{equation*}
\bar{v}(0)=\bar{v}(t)=0 \tag{5}
\end{equation*}
$$

and $\bar{v}=\left(v^{1}, \ldots, v^{n}\right)$
For $c \in R$, we define

$$
\begin{equation*}
\bar{w}(.)=\bar{x}(.)+c \bar{v}(.) \tag{6}
\end{equation*}
$$

Then, $\bar{w}($.$) belongs to the admissible class A$ and $\bar{x}($.$) being the minimizer of the action functional and so$

$$
I[\bar{x}(.)] \leq I[\bar{w}(.)]
$$

Therefore the real-valued function

$$
i(c)=I[\bar{x}(.)+c \bar{v}(.)]
$$

Has a minimizer at $c=0$ and consequently

$$
\begin{equation*}
i^{\prime}(0)=0 \tag{7}
\end{equation*}
$$

provided $i^{\prime}(0)$ exists.
Next we shall compute this derivative explicitly and we get

$$
i(c)=\int_{0}^{t} L(\dot{\bar{x}}(s)+c \dot{\bar{v}}(s), \bar{x}(s)+c \bar{v}(s)) d s
$$

And differentiating above equation w.r.t. c, we obtain

$$
i^{\prime}(c)=\int_{0}^{t} \sum_{i=1}^{n} L_{q_{i}}(\dot{\bar{x}}+c \dot{\bar{v}}, x+c \bar{v}) \dot{v}^{i}+L_{x_{i}}(\dot{\bar{x}}+c \dot{\bar{v}}, x+c \bar{v}) v^{i} d s
$$

Set $c=0$ and using (7), we have

$$
\begin{equation*}
0=i^{\prime}(0)=\int_{0}^{t} \sum_{i=1}^{n} L_{q_{i}}(\dot{\bar{x}}, \bar{x}) \dot{v}^{i}+L_{x_{i}}(\dot{\bar{x}}, \bar{x}) v^{i} d s \tag{8}
\end{equation*}
$$

Now we integrate (8) by parts in the first term inside the integral and using (5), we have

$$
0=\sum_{i=1}^{n} \int_{0}^{t}\left[-\frac{d}{d s}\left(L_{q_{i}}(\dot{\bar{x}}, \bar{x})\right)+L_{x_{i}}(\dot{\bar{x}}, \bar{x})\right] v^{i} d s
$$

This identity is valid for all smooth functions $\bar{v}=\left(v^{1}, \ldots, v^{n}\right)$ satisfying (5) and so

$$
-\frac{d}{d s}\left(L_{q_{i}}(\dot{\bar{x}}, \bar{x})\right)+L_{x_{i}}(\dot{\bar{x}}, \bar{x})=0
$$

for $0 \leq s \leq t, i=1, \ldots, n$
Remark: We see that any minimizer $\bar{x}(.) \in A$ of $I[$.$] solves the Euler-Lagrange system of ODE. It is also$ possible that a curve $\bar{x}(.) \in A$ may solve the Euler-Lagrange equations without necessarily being a minimizer, in this case $\bar{x}($.$) is a critical point of I[$.$] . So, we can conclude that every minimizer is a critical$ point but a critical point need not be a minimizer.

5.4.3 Hamilton's ODE:

Suppose C^{2} function $\bar{x}($.$) is a critical point of the action functional and solves the Euler-Lagrange equations.$ Set

$$
\begin{equation*}
\bar{p}(s)=D_{q} L(\dot{\bar{x}}(s), \bar{x}(s)) \quad(0 \leq s \leq t) \tag{1}
\end{equation*}
$$

where $\bar{p}($.$) is called the generalized momentum corresponding to the position \bar{x}($.$) and velocity \dot{\bar{x}}($.$) .$
Now we make important hypothesis:
(2) Hypothesis: Suppose for all $x, p \in R^{n}$ that the equation

$$
p=D_{q} L(q, x)
$$

can be uniquely solved for q as a smooth function of p and $x, q=\bar{q} \geq(p, x)$
Definition: The Hamiltonian H associated with the Lagrangian L is

$$
H(p, x)=p \cdot \bar{q}(p, x)-L(\bar{q}(p, x), x) \quad\left(p, x \in R^{n}\right)
$$

where the function $\bar{q}(.,$.$) is defined implicitly by (2).$
Example: The Hamiltonian corresponding to the Lagrangian $L(q, x)=\frac{1}{2} m|q|^{2}-\phi(x)$ is

$$
H(p, x)=\frac{1}{2 m}|p|^{2}+\phi(x)
$$

The Hamiltonian is thus the total energy and the Lagrangian is the difference between the kinetic and potential energy.

5.4.4 Theorem: Derivative of Hamilton's ODE

The functions $\bar{x}($.$) and \bar{p}($.$) satisfy Hamilton's equations$

$$
\left\{\begin{array}{l}
\dot{\bar{x}}(s)=D_{p} H(\bar{p}(s), \bar{x}(s)) \tag{3}\\
\dot{\bar{p}}(s)=-D_{x} H(\bar{p}(s), \bar{x}(s)) \quad(0 \leq s \leq t)
\end{array}\right.
$$

Furthermore, the mapping $s \mapsto H(\bar{p}(s), \bar{x}(s))$ is constant.
Proof: From (1) and (2), we have

$$
\dot{\bar{x}}(s)=\bar{q}(\bar{p}(s), \bar{x}(s))
$$

Let us write $\bar{q}()=.\left(q^{1}(),. \ldots, q^{n}().\right)$
We compute for $i=1, \ldots, n$

$$
\begin{aligned}
\frac{\partial H}{\partial x_{i}}(p, x)= & \sum_{k=1}^{n} p_{k} \frac{\partial q^{k}}{\partial x_{i}}(p, x)-\frac{\partial L}{\partial q_{k}}(q, x) \frac{\partial q^{k}}{\partial x_{i}}(p, x)-\frac{\partial L}{\partial x_{i}}(q, x) \\
& =-\frac{\partial L}{\partial x_{i}}(q, x) \quad \quad \text { (using (2)) }
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial H}{\partial x_{i}}(p, x)=q^{i}(p, x)+\sum_{k=1}^{n} p_{k} \frac{\partial q^{k}}{\partial p_{i}}(p, x)-\frac{\partial L}{\partial q_{k}}(q, x) \frac{\partial q^{k}}{\partial p_{i}}(p, x) \\
=q^{i}(p, x) \quad \quad \text { (again using (2)) }
\end{aligned}
$$

Thus
and

$$
\begin{aligned}
\frac{\partial H}{\partial p_{i}}(\bar{p}(s), \bar{x}(s))= & q^{i}(\bar{p}(s), \bar{x}(s))=\dot{x}^{i}(s) \\
\frac{\partial H}{\partial x_{i}}(\bar{p}(s), \bar{x}(s))=-\frac{\partial L}{\partial x_{i}} & (\bar{q}(\bar{p}(s), \bar{x}(s)), \bar{x}(s))=-\frac{\partial L}{\partial x_{i}}(\dot{\bar{x}}(s), \bar{x}(s)) \\
& =-\frac{d}{d s}\left(\frac{\partial L}{\partial q_{i}}(\dot{\bar{x}}(s), \bar{x}(s))\right) \\
& =-\dot{p}^{i}(s)
\end{aligned}
$$

Hence

$$
\frac{d}{d s} H(\bar{p}(s), \bar{x}(s))=\sum_{i=1}^{n} \frac{\partial H}{\partial p_{i}} \dot{p}^{i}+\frac{\partial H}{\partial x_{i}} \dot{x}^{i}
$$

$$
=\sum_{i=1}^{n} \frac{\partial H}{\partial p_{i}}\left(\frac{-\partial H}{\partial x_{i}}\right)+\frac{\partial H}{\partial x_{i}}\left(\frac{\partial H}{\partial p_{i}}\right)=0
$$

which shows that the mapping $s \rightarrow H(\bar{p}(s), \bar{x}(s))$ is constant.

5.5 Legendre transform:

Assume that the Lagrangian $L: R^{n} \rightarrow R$ satisfies following conditions
(i) the mapping $q \mapsto L(q)$ is convex
(ii) $\lim _{|q| \rightarrow \infty} \frac{L(q)}{|q|}=+\infty$
whose convexity of the mapping in equation (2) implies L is continuous.
Note: In equation (2), we simplify the Lagrangian by dropping the x -dependence in the Hamiltonian so that afterwards $H=H(p)$.

Definition: The Legendre transform of L is

$$
\begin{equation*}
L^{*}(p)=\sup _{q \in R^{n}}\{p \cdot q-L(q)\} \quad\left(p \in R^{n}\right) \tag{3}
\end{equation*}
$$

Remark: Hamiltonian H is the Legendre transform of L, and vice versa:

$$
\begin{equation*}
L=H^{*}, H=L^{*} \tag{4}
\end{equation*}
$$

We say H and L are dual convex functions.

Theorem: Convex duality of Hamiltonian and Lagrangian

Assume L satisfies (1),(2) and define H by (3),(4)
(i)Then

$$
\text { the mapping } p \mapsto H(p) \text { is convex }
$$

And

$$
\lim _{|p| \rightarrow \infty} \frac{H(p)}{|p|}=+\infty
$$

(ii)Furthermore

$$
\begin{equation*}
L=H^{*} \tag{5}
\end{equation*}
$$

Proof: For each fixed q, the function $p \mapsto p . q-L(q)$ is linear, and the mapping

$$
p \mapsto H(p)=L^{*}(p)=\sup _{q \in R^{n}}\{p \cdot q-L(q)\} \text { is convex. }
$$

Indeed, if $0 \leq \tau \leq 1, p \cdot \hat{p} \in R^{n}$,

$$
\begin{aligned}
H(\tau p+(1-\tau) \hat{p})= & \sup \{(\tau p+(1-\tau) \hat{p}) \cdot q-L(q)\} \\
& \leq \tau \sup \{p \cdot q-L(q)\}+(1-\tau) \sup _{q}\{\hat{p} \cdot q-L(q)\} \\
& =\tau H(p)+(1-\tau) H(\hat{p})
\end{aligned}
$$

Fix any $\lambda>0, p \neq 0$. Then

$$
\begin{aligned}
H(p) & =\sup _{q \in R^{n}}\{p \cdot q-L(q)\} \\
& \geq \lambda|p|-L\left(\lambda \frac{p}{|p|}\right) \quad\left(q=\lambda \frac{p}{|p|}\right) \\
& \geq \lambda|p|-\max _{B(0, \lambda)} L
\end{aligned}
$$

Therefore, $\lim \inf _{|p| \rightarrow \infty} \frac{H(p)}{|p|} \geq \lambda$ for all $\lambda>0$
From (4), we have

$$
H(p)+L(q) \geq p \cdot q \quad \forall p, q \in R^{n}
$$

and

$$
L(q) \geq \sup _{p \in R^{n}}\{p \cdot q-H(p)\}=H^{*}(q)
$$

On the other hand

$$
\begin{align*}
H^{*}(q)= & \sup _{p \in R^{n}}\{p \cdot q-\sup \{p \cdot r-L(r)\}\} \\
& =\sup _{p \in R^{n}} \inf _{r \in R^{n}}\{p \cdot(q-r)+L(r)\} \tag{6}
\end{align*}
$$

since $q \mapsto L(q)$ is convex.
Let there exists $s \in R^{n}$ such that

$$
L(r) \geq L(q)+s .(r-q) \quad\left(r \in R^{n}\right)
$$

Taking $p=s$ in (6)

$$
H^{*}(q) \geq \inf _{r \in R^{n}}\{s .(q-r)+L(r)\}=L(q)
$$

5.6 Hopf-Lax Formula

Consider the initial-value problem for the Hamilton-Jacobi equation

$$
\left\{\begin{array}{c}
u_{t}+H(D u)=0 \text { in } \quad R^{n} \times(0, \infty) \tag{1}\\
u=g \text { on } R^{n} \times\{t=0\}
\end{array}\right.
$$

We know that the calculus of variations problem with Lagrangian leads to Hamilton's ODE for the associated Hamilton H. Hence these ODE are also the characteristic equations of the Hamilton-Jacobi PDE, we infer there is probably a direct connection between this PDE and the calculus of variations.

Theorem: If $x \in R^{n}$ and $t>0$, then the solution $u=u(x, t)$ of the minimization problem

$$
\begin{equation*}
u(x, t)=\inf \left\{\int_{0}^{t} L(\dot{\bar{w}}(s)) d s+g(y) \mid \bar{w}(0)=y, \bar{w}(t)=x\right\} \tag{2}
\end{equation*}
$$

is

$$
\begin{equation*}
u(x, t)=\min \left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\} \tag{3}
\end{equation*}
$$

where, the infimum is taken over all C^{l} functions. The expression on the right hand side of (3) called Hopf-Lax formula.

Proof: Fix any $y \in R^{n}$ and define

$$
\bar{w}(s)=y+\frac{s}{t}(x-y) \quad(0 \leq s \leq t)
$$

Then $\bar{w}(0)=y \quad$ and $\bar{w}(t)=y$
The expression (2) of u implies

$$
u(x, t) \leq \int_{0}^{t} L(\dot{\bar{w}}(s)) d s+g(y)=t L\left(\frac{x-y}{t}\right)+g(y)
$$

and therefore

$$
u(x, t) \leq \inf _{y \in R^{n}}\left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\}
$$

If $\bar{w}($.$) is any C^{1}$ function satisfying $\bar{w}(t)=x$, then we have

$$
L\left(\frac{1}{t} \int_{0}^{t} \dot{\bar{w}}(s) d s\right) \leq \frac{1}{t} \int_{0}^{t} L(\dot{\bar{w}}(s)) d s \quad \text { (by Jensen's inequality) }
$$

Thus if we write $y=w(0)$, we find

$$
t L\left(\frac{x-y}{t}\right)+g(y) \leq \int_{0}^{t} L(\dot{\bar{w}}(s)) d s+g(y)
$$

and consequently

$$
\inf _{y \in R^{n}}\left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\} \leq u(x, t)
$$

Hence

$$
u(x, t)=\inf _{y \in R^{n}}\left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\}
$$

Lemma 1: (A functional identity)

For each $x \in R^{n}$ and $0 \leq s \leq t$, we have

$$
\begin{equation*}
u(x, t)=\min _{y \in R^{n}}\left\{(t-s) L\left(\frac{x-y}{t-s}\right)+u(y, s)\right\} \tag{1}
\end{equation*}
$$

In other words, to compute $u(., t)$, we can calculate u at time s and then use $u(., s)$ as the initial condition on the remaining time interval $[s, t]$.

Proof: Fix $y \in R^{n}, 0<s<t$ and choose $z \in R^{n}$ so that

$$
\begin{equation*}
u(y, s)=s L\left(\frac{y-z}{s}\right)+g(z) \tag{2}
\end{equation*}
$$

Now since L is convex and $\frac{x-z}{t}=\left(1-\frac{s}{t}\right)\left(\frac{x-y}{t-s}\right)+\frac{s}{t} \frac{y-z}{s}$, we have

$$
L\left(\frac{x-z}{t}\right) \leq\left(1-\frac{s}{t}\right) L\left(\frac{x-y}{t-s}\right)+\frac{s}{t} L\left(\frac{y-z}{s}\right)
$$

Thus

$$
\begin{aligned}
& u(x, t) \leq t L\left(\frac{x-z}{t}\right)+g(z) \leq(t-s) L\left(\frac{x-y}{t-s}\right)+s L\left(\frac{y-z}{s}\right)+g(z) \\
&=(t-s) L\left(\frac{x-y}{t-s}\right)+u(y, s)
\end{aligned}
$$

By (2). This inequality is true for each $y \in R^{n}$. Therefore, since $y \mapsto u(y, s)$ is continuous, we have

$$
\begin{equation*}
u(x, t) \leq \min _{y \in R^{n}}\left\{(t-s) L\left(\frac{x-y}{t-s}\right)+u(y, s)\right\} \tag{3}
\end{equation*}
$$

Now choose w such that

$$
\begin{equation*}
u(x, t)=t L\left(\frac{x-w}{t}\right)+g(w) \tag{4}
\end{equation*}
$$

and set $y:=\frac{s}{t} x+\left(1-\frac{s}{t}\right) w$. Then $\frac{x-y}{t-s}=\frac{x-w}{t}=\frac{y-w}{s}$.
Consequently

$$
\begin{aligned}
(t-s) L\left(\frac{x-y}{t-s}\right)+u & (y, s) \\
& \leq(t-s) L\left(\frac{x-w}{t}\right)+s L\left(\frac{y-w}{s}\right)+g(w) \\
& =t L\left(\frac{x-w}{t}\right)+g(w)=u(x, t)
\end{aligned}
$$

By (4). Hence

$$
\begin{equation*}
\min _{y \in R^{n}}\left\{(t-s) L\left(\frac{x-y}{t-s}\right)+u(y, s)\right\} \leq u(x, t) \tag{5}
\end{equation*}
$$

Lemma 2: (Lipschitz continuity)
The function u is Lipschitz continuous in $R^{n} \times[0, \infty)$, and $u=g$ on $R^{n} \times\{t=0\}$.
Proof: Fix $t>0, x, \hat{x} \in R^{n}$. Choose $y \in R^{n}$ such that

$$
\begin{equation*}
t L\left(\frac{x-y}{t}\right)+g(y)=u(x, t) \tag{6}
\end{equation*}
$$

Then

$$
\begin{aligned}
u(\hat{x}, t)-u(x, t)= & \inf _{z}\left\{t L\left(\frac{\hat{x}-z}{t}\right)+g(z)\right\}-t L\left(\frac{x-y}{t}\right)-g(y) \\
& \leq g(\hat{x}-x+y)-g(y) \leq \operatorname{Lip}(g)|\hat{x}-x|
\end{aligned}
$$

Hence

$$
u(\hat{x}, t)-u(x, t) \leq \operatorname{Lip}(g)|\hat{x}-x|
$$

and, interchanging the roles of \hat{x} and x, we find

$$
\begin{equation*}
|u(\hat{x}, t)-u(x, t)| \leq \operatorname{Lip}(g)|x-\hat{x}| \tag{7}
\end{equation*}
$$

Now select $x \in R^{n}, \mathfrak{t}>0$. Choosing $y=x$ in (*), we discover

$$
\begin{equation*}
u(x, t) \leq t L(0)+g(x) \tag{8}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
u(x, t)= & \min _{y \in R^{n}}\left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\} \\
& \geq g(x)+\min _{y \in R^{n}}\left\{-\operatorname{Lip}(g)|x-y|+t L\left(\frac{x-y}{t}\right)\right\} \\
& =g(x)-t \max _{z \in R^{n}}\{\operatorname{Lip}(g)|z|-L(z)\} \quad\left(z=\frac{x-y}{t}\right) \\
& =g(x)-t \max _{w \in B(0, L i p(g))} \max _{z \in R^{n}}\{w \cdot z-L(z)\} \\
& =g(x)-t \max _{B(0, L i p(g))} H
\end{aligned}
$$

This inequality and (8) imply

$$
|u(x, t)-g(x)| \leq C t
$$

For

$$
\begin{equation*}
\mathrm{C}:=\max \left(|L(0)|, \max _{B(0, L i p(g))}|H|\right) \tag{9}
\end{equation*}
$$

Finally select $x \in R^{n}, 0<\hat{t}<t$. Then $\operatorname{Lip}(u(., t)) \leq \operatorname{Lip}(g)$ by (7) above. Consequently Lemma 1 and calculations like those employed in step 2 above imply

$$
|u(x, t)-u(x, \hat{t})| \leq C|t-\hat{t}|
$$

For the constant C defined by (9).

Theorem: Solving the Hamilton-Jacobi equation

Suppose $x \in R^{n}, t>0$, and u defined by the Hopf-Lax formula

$$
u(x, t)=\min _{y \in R^{n}}\left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\}
$$

is differentiable at a point $(x, t) \in R^{n} \times(0, \infty)$. Then

$$
u_{t}(x, t)+H(D u(x, t))=0
$$

Proof: Fix $q \in R^{n}, h>0$. Owing to Lemma 1,

$$
\begin{aligned}
u(x+h q, t+h)= & \min _{y \in R^{n}}\left\{h L\left(\frac{x+h q-y}{h}\right)+u(y, t)\right\} \\
\leq & h L(q)+u(x, t)
\end{aligned}
$$

Hence

$$
\frac{u(x+h q, t+h)-u(x, t)}{h} \leq L(q)
$$

Let $h \rightarrow 0^{+}$, to compute

$$
q \cdot D u(x, t)+u_{t}(x, t) \leq L(q) .
$$

This inequality is valid for all $q \in R^{n}$, and so

$$
\begin{equation*}
u_{t}(x, t)+H(D u(x, t))=u_{t}(x, t)+\max _{q \in R^{n}}\{q \cdot D u(x, t)-L(q)\} \leq 0 \tag{10}
\end{equation*}
$$

The first equality holds since $H=L^{*}$.
Now choose z such that $u(x, t)=t L\left(\frac{x-z}{t}\right)+g(z)$. Fix $\mathrm{h}>0$ and set $s=t-h, y=\frac{s}{t} x+\left(1-\frac{s}{t}\right) z$.
Then $\frac{x-z}{t}=\frac{y-z}{s}$, and thus

$$
\begin{gathered}
u(x, t)-u(y, s) \geq t L\left(\frac{x-z}{t}\right)+g(z)-\left[s L\left(\frac{y-z}{s}\right)+g(z)\right] \\
=(t-s) L\left(\frac{x-z}{t}\right)
\end{gathered}
$$

That is,

$$
\frac{u(x, t)-u\left(\left(1-\frac{h}{t}\right) x+\frac{h}{t} z, t-h\right)}{h} \geq L\left(\frac{x-z}{t}\right)
$$

Let $h \rightarrow 0^{+}$to compute

$$
\frac{x-z}{t} \cdot D u(x, t)+u_{t}(x, t) \geq L\left(\frac{x-z}{t}\right)
$$

Consequently

$$
\begin{aligned}
& u_{t}(x, t)+H(D u(x, t))=u_{t}(x, t)+\max _{q \in R^{n}}\{q \cdot D u(x, t)-L(q)\} \\
& \geq u_{t}(x, t)+\frac{x-z}{t} \cdot D u(x, t)-L\left(\frac{x-z}{t}\right) \\
& \geq 0
\end{aligned}
$$

This inequality and (10) complete the proof.

Lemma 3: (Semiconcavity)

Suppose there exists a constant C such that

$$
\begin{equation*}
g(x+z)-2 g(x)+g(x-z) \leq C|z|^{2} \tag{11}
\end{equation*}
$$

for all $x, z \in R^{n}$. Define u by the Hopf-Lax formula (*). Then

$$
u(x+z, t)-2 u(x, t)+u(x-z, t) \leq C|z|^{2}
$$

for all $x, z \in R^{n}, t>0$.
Remark: We say g is semiconcave provided (11) holds. It is easy to check (11) is valid if g is C^{2} and $\sup _{R^{n}}\left|D^{2} g\right|<\infty$. Note that g is semiconcave if and only if the mapping $x \mapsto g(x)+\frac{C}{2}|x|^{2}$ is concave for some constant C.

Proof: Choose $y \in R^{n}$ so that $u(x, t)=t L\left(\frac{x-y}{t}\right)+g(y)$. Then putting $y+z$ and $y-z$ in the Hopf-Lax formulas for $u(x+z, t)$ and $u(x-z, t)$, we find

$$
\begin{aligned}
& u(x+z, t)-2 u(x, t)+u(x-z, t) \\
& \begin{array}{l}
\leq \\
\quad\left[t L\left(\frac{x-y}{t}\right)+g(y+z)\right]-2\left[t L\left(\frac{x-y}{t}\right)+g(y)\right] \\
\quad+\left[t L\left(\frac{x-y}{t}\right)+g(y-z)\right] \\
= \\
\leq \\
\leq \\
\quad C \mid z(y+z)-2 g(y)+g(y-z)
\end{array} \quad \quad \text { by }(11)
\end{aligned}
$$

Definition: A C^{2} convex function $H: R^{n} \rightarrow R$ is called uniformly convex(with constant $\theta>0$) if

$$
\begin{equation*}
\sum_{i, j=1}^{n} H_{p_{i} p_{j}}(p) \xi_{i} \xi_{j} \geq \theta|\xi|^{2} \quad \text { for all } p, \xi \in R^{n} \tag{12}
\end{equation*}
$$

We now prove that even if g is not semi-concave, the uniform convexity of H forces u to become semiconcave for times $t>0$: it is a kind of mild regularizing effect for the Hopf-Lax solution of the initial- value problem.

Lemma 4: (Semi-concavity Again)

Suppose that H is uniformly convex (with constant θ) and u is defined by the Hopf-Lax formula. Then

$$
u(x+z, t)-2 u(x, t)+u(x-z, t) \leq \frac{1}{\theta t}|z|^{2}
$$

for all $x, z \in R^{n}, t>0$.
Proof: We note first using Taylor's formula that (12) implies

$$
\begin{equation*}
H\left(\frac{p_{1}+p_{2}}{2}\right) \leq \frac{1}{2} H\left(p_{1}\right)+\frac{1}{2} H\left(p_{2}\right)-\frac{\theta}{8}\left|p_{1}-p_{2}\right|^{2} \tag{13}
\end{equation*}
$$

Next we claim that for the Lagrangian L, we have estimate

$$
\begin{equation*}
\frac{1}{2} L\left(q_{1}\right)+\frac{1}{2} L\left(q_{2}\right) \leq L\left(\frac{q_{1}+q_{2}}{2}\right)+\frac{1}{8 \theta}\left|q_{1}-q_{2}\right|^{2} \tag{14}
\end{equation*}
$$

For all $q_{1}, q_{2} \in R^{n}$. Verification is left as an exercise.
Now choose y so that $u(x, t)=t L\left(\frac{x-y}{t}\right)+g(y)$. Then using the same value of y in the Hopf-Lax formulas for $u(x+z, t)$ and $u(x-z, t)$, we calculate

$$
\begin{aligned}
u(x+z, t)- & 2 u(x, t)+u(x-z, t) \\
\leq & {\left[t L\left(\frac{x+z-y}{t}\right)+g(y)\right]-2\left[t L\left(\frac{x-y}{t}\right)+g(y)\right] } \\
& +\left[t L\left(\frac{x+z-y}{t}\right)+g(y)\right] \\
= & 2 t\left[\frac{1}{2} L\left(\frac{x+z-y}{t}\right)+\frac{1}{2} L\left(\frac{x-z-y}{t}\right)-L\left(\frac{x-y}{t}\right)\right] \\
\leq & 2 t \frac{1}{8 \theta}\left|\frac{2 z}{t}\right|^{2} \leq \frac{1}{\theta t}|z|^{2},
\end{aligned}
$$

The next-to-last inequality following from (14).
Theorem: Suppose $x \in R^{n}, t>0$, and u defined by the Hopf-Lax formula is differentiable at a point $(x, t) \in R^{n} \times(0, \infty)$. Then

$$
u_{t}(x, t)+H(D u(x, t))=0
$$

Proof: Fix $q \in R^{n}, h>0$ and using Lemma (1), then we have

$$
\begin{aligned}
u(x+h q, t+h)= & \min _{y \in R^{n}}\left\{h L\left(\frac{x+h q-y}{h}\right)+u(y, t)\right\} \\
& \leq h L(q)+u(x, t)
\end{aligned}
$$

Hence

$$
\frac{u(x+h q, t+h)-u(x, t)}{h} \leq L(q)
$$

Let $h \rightarrow 0^{+}$, to compute

$$
q \cdot D u(x, t)+u_{t}(x, t) \leq L(q) \quad \text { for all } q \in R^{n}
$$

and therefore

$$
u_{t}(x, t)+H(D u(x, t))=u_{t}(x, t)+\max _{q \in R^{n}}\{q \cdot D u(x, t)-L(q)\} \leq 0
$$

The first equality holds since $H=L^{*}$
Now choose z_{z} such that

$$
u(x, t)=t L\left(\frac{x-z}{t}\right)+g(z)
$$

Fix $\mathrm{h}>0$ and set

$$
s=t-h, y=\frac{s}{t} x+\left(1-\frac{s}{t}\right) z
$$

Then

$$
\frac{x-z}{t}=\frac{y-z}{s}
$$

and

$$
\begin{aligned}
u(x, t)-u(y, s) \geq & t L\left(\frac{x-z}{t}\right)+g(z)-\left[s L\left(\frac{y-z}{s}\right)+g(z)\right] \\
& =(t-s) L\left(\frac{x-z}{t}\right) \\
\Rightarrow & \frac{u(x, t)-u\left(\left(1-\frac{h}{t}\right) x+\frac{h}{t} z, t-h\right)}{h} \geq L\left(\frac{x-z}{t}\right)
\end{aligned}
$$

Let $h \rightarrow 0^{+}$to compute

$$
\frac{x-z}{t} \cdot D u(x, t)+u_{t}(x, t) \geq L\left(\frac{x-z}{t}\right)
$$

Consequently

$$
\begin{aligned}
u_{t}(x, t)+H(D u(x, t))= & u_{t}(x, t)+\max _{q \in R^{n}}\{q \cdot D u(x, t)-L(q)\} \\
& \geq u_{t}(x, t)+\frac{x-z}{t} \cdot D u(x, t)-L\left(\frac{x-z}{t}\right) \\
& \geq 0
\end{aligned}
$$

Hence

$$
u_{t}(x, t)+H(D u(x, t))=0
$$

5.7 Weak Solutions and Uniqueness

Definition: We say that a Lipschitz Continuous function $u: R^{n} \times[0, \infty) \rightarrow R$ is a weak solution of the initial-value problem

$$
\left\{\begin{array}{c}
u_{t}+H(D u)=0 \text { in } \quad R^{n} \times(0, \infty) \tag{15}\\
u=g \text { on } \quad R^{n} \times\{t=0\}
\end{array}\right.
$$

provided
(a) $u(x, 0)=g(x) \quad\left(x \in R^{n}\right)$
(b) $u_{t}(x, t)+H(D u(x, t))=0$ for a.e. $(x, t) \in R^{n} \times(0, \infty)$
(c) $u(x+z, t)-z u(x, t)+u(x-z, t) \leq c\left(1+\frac{1}{t}\right)|z|^{2}$
for some constant $c \geq 0$ and all $x, z \in R^{n}, t>0$.

Theorem: Uniqueness of Weak Solution

Assume H is C^{2} and satisfies $\left\{\begin{array}{l}H \text { is convex and } \\ \lim _{|p| \rightarrow \infty} \frac{H(p)}{|p|}=+\infty\end{array}\right.$ and $g: R^{n} \rightarrow R$ is Lipschitz continuous. Then there exists at most one weak solution of the initial-value problem (15).

Proof: Suppose that u and \tilde{u} are two weak solutions of (15) and write $w:=u-\tilde{u}$.
Observe now at any point (y, s) where both u and \tilde{u} are differentiable and solve our PDE, we have

$$
w_{t}(y, s)=u_{t}(y, s)-\tilde{u}_{t}(y, s)
$$

$$
\begin{aligned}
& =-H(D u(y, s))+H(D \tilde{u}(y, s)) \\
& =-\int_{0}^{1} \frac{d}{d r} H(r D u(y, s)+(1-r) D \tilde{u}(y, s)) d r \\
& =-\int_{0}^{1} D H(r D u(y, s)+(1-r) D \tilde{u}(y, s)) d r \cdot(D u(y, s)-D \tilde{u}(y, s)) \\
& =:-b(y, s) \cdot D w(y, s)
\end{aligned}
$$

Consequently

$$
\begin{equation*}
w_{t}+b . D w=0 \quad \text { a.e. } \tag{16}
\end{equation*}
$$

Write $v:=\phi(w) \geq 0$, where $\phi: R \rightarrow[0, \infty)$ is a smooth function to be selected later. We multiply(16) by $\phi^{\prime}(w)$ to discover

$$
\begin{equation*}
v_{t}+b . D v=0 \quad \text { a.e } \tag{17}
\end{equation*}
$$

Now choose $\varepsilon>0$ and define $u^{\varepsilon}:=\eta_{\varepsilon} * u, \tilde{u}^{\varepsilon}:=\eta_{\varepsilon} * \tilde{u}$, where η_{ε} is the standard mollifier in the x and t variables. Then we have

$$
\begin{equation*}
\left|D u^{\varepsilon}\right| \leq \operatorname{Lip}(u),\left|D \tilde{u}^{\varepsilon}\right| \leq \operatorname{Lip}(\tilde{u}), \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
D u^{\varepsilon} \rightarrow D u, D \tilde{u}^{\varepsilon} \rightarrow D \tilde{u} \quad \text { a.e., as } \varepsilon \rightarrow 0 \tag{19}
\end{equation*}
$$

Furthermore inequality(c) in the definition of weak solution implies

$$
D^{2} u^{\varepsilon}, D^{2} \tilde{u}^{\varepsilon} \leq C\left(1+\frac{1}{s}\right) I
$$

For an appropriate constant C and all $\varepsilon>0, y \in R^{n}, s>2 \varepsilon$. Verification is left as an exercise. Write

$$
\begin{equation*}
b_{\varepsilon}(y, s):=\int_{0}^{1} D H\left(r D u^{\varepsilon}(y, s)+(1-r) D \tilde{u}^{\varepsilon}(y, s)\right) d r \tag{20}
\end{equation*}
$$

Then (17) becomes

$$
v_{t}+b_{\varepsilon} \cdot D v=\left(b_{\varepsilon}-b\right) \cdot D v
$$

a.e.

Hence

$$
\begin{equation*}
v_{t}+\operatorname{div}\left(v b_{\varepsilon}\right)=\left(d i v b_{\varepsilon}\right) v+\left(b_{\varepsilon}-b\right) . D v \quad \text { a.e. } \tag{21}
\end{equation*}
$$

Now

$$
\begin{align*}
\operatorname{div}_{\varepsilon}= & \int_{0}^{1} \sum_{k, l=1}^{n} H_{p_{k} p_{l}}\left(r D u^{\varepsilon}+(1-r) D \tilde{u}^{\varepsilon}\right)\left(r u_{x_{i} x_{k}}^{\varepsilon}+(1-r) \tilde{u}_{x_{i} x_{k}}^{\varepsilon}\right) d r \\
& \leq C\left(1+\frac{1}{s}\right) \tag{22}
\end{align*}
$$

For some constant C , in view of (17) and (19). Here we note that H convex implies $D^{2} H \geq 0$.
Fix $x_{0} \in R^{n}, t_{0}>0$, and set

$$
\begin{equation*}
R:=\max \{|D H(p)||p| \leq \max (\operatorname{Lip}(\tilde{u}))\} \tag{23}
\end{equation*}
$$

Define also the cone

$$
C:=\left\{(x, t)\left|0 \leq t \leq t_{0},\left|x-x_{0}\right| \leq R\left(t_{0}-t\right)\right\}\right.
$$

Next write

$$
e(t)=\int_{B\left(x_{0}, R\left(t_{0}-t\right)\right)} v(x, t) d x
$$

and compute for a.e. $\mathrm{t}>0$:

$$
\begin{aligned}
\dot{e}(t)= & \int_{B\left(x_{0}, R\left(t_{0}-t\right)\right)} v_{t} d x-R \int_{\partial B\left(x_{0}, R\left(t_{0}-t\right)\right)} v d S \\
= & \int_{B\left(x_{0}, R\left(t_{0}-t\right)\right)}-\operatorname{div}\left(v b_{\varepsilon}\right)+\left(\operatorname{div} b_{\varepsilon}\right) v+\left(b_{\varepsilon}-b\right) \cdot D v d x \\
& -R \int_{\partial B\left(x_{0}, R\left(t_{0}-t\right)\right)} v d S \quad \text { by (21) } \\
= & -\int_{\partial B\left(x_{0}, R\left(t_{0}-t\right)\right)} v\left(b_{\varepsilon} \cdot v+R\right) d S \\
& \quad+\int_{B\left(x_{0}, R\left(t_{0}-t\right)\right)}\left(d i v b_{\varepsilon}\right) v+\left(b_{\varepsilon}-b\right) \cdot D v d x \\
\leq & \int_{B\left(x_{0}, R\left(t_{0}-t\right)\right)}\left(d i v b_{\varepsilon}\right) v+\left(b_{\varepsilon}-b\right) \cdot D v d x \\
\leq & C\left(1+\frac{1}{t}\right) e(t)+\int_{B\left(x_{0}, R\left(t_{0}-t\right)\right)}\left(b_{\varepsilon}-b\right) \cdot D v d x
\end{aligned}
$$

by (22). The last term on the right hand side goes to zero as $\varepsilon \rightarrow 0$, for a.e. $t_{0}>0$, according to (17), (18) and the Dominated Convergence Theorem.

Thus

$$
\begin{equation*}
\dot{e}(t) \leq C\left(1+\frac{1}{t}\right) e(t) \quad \text { for a.e. } 0<t<t_{0} \tag{24}
\end{equation*}
$$

Fix $0<\varepsilon<r<t$ and choose the function $\phi(z)$ to equal zero if

$$
|z| \leq \varepsilon[\operatorname{Lip}(u)+\operatorname{Lip}(\tilde{u})]
$$

and to be positive otherwise. Since $u=\tilde{u}$ on $R^{n} \times\{t=0\}$,

$$
v=\phi(w)=\phi(u-\tilde{u})=0 \quad \text { at }\{t=\varepsilon\}
$$

Thus $e(\varepsilon)=0$. Consequently Gronwall's inequality and (24) imply

$$
e(r) \leq e(\varepsilon) e^{\int_{\varepsilon}^{r} c\left(1+\frac{1}{s}\right) d S}=0
$$

Hence

$$
|u-\tilde{u}| \leq \varepsilon[\operatorname{Lip}(u)+\operatorname{Lip}(\tilde{u})] \quad \text { on } B\left(x_{0}, R\left(t_{0}-r\right)\right)
$$

This inequality is valid for all $\varepsilon>0$, and $\operatorname{so} u \equiv \tilde{u}$ in $B\left(x_{0}, R\left(t_{0}-r\right)\right)$. Therefore, in particular, $u\left(x_{0}, t_{0}\right)=\tilde{u}\left(x_{0}, t_{0}\right)$.

