CHAPTER-5

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Structure

5.1 Non-linear First Order PDE — Complete integrals

5.2 Envelopes

5.3 Characteristics

5.4 Hamilton Jacobi equations (Calculus of variations, Hamilton ODE)

5.5 Legendre Transform

5.6 Hopf-Lax Formula

5.7 Weak Solutions and Unigqueness
5.1 Definition: Let U is an open sunset of R"* X :(x1 xn) eR"and let u:U < R" — R. A general form
of first-order partial differential equation for u=u (x) is given by

F(Du,u,x)=0, (D

where F : R"x RxU — Ris a given function, Du is the vector of partial derivatives of Uand u(x) is the
unknown function.

We can write equation (1) as
F=F(p,zx)
= F (P Py Py s Z X0 Xy eer X))

for peR", zeR, xeU.

Here, “p” is the name of the variable for which we substitute the gradient Du and “z” is the variable for
which we substitute u(x) . We also assume hereafter that F is smooth, and set

DpF:(Fpl,sz,...,Fpn)
D,F =F,
D, =(F,.F,.-..F. )
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Remark: The PDE F(Du,u, X) =0is usually accompanied by a boundary condition of the form u=g

on oU. Such a problem is usually called a boundary value problem. Here our main concern is to search
solution for the non-linear PDE

Complete Integral: Consider the non-linear first order PDE
F(Du,u,x)=0 (D)

Suppose first that A= R"is an open set. Assume for each parameteraz(al,...,an)e A, we have ac?
solution

u=u(x;a) . ()
of the PDE (1) and
i ual uxlal uxna1 ]
(Dau,Dfau): o Ui e .. 3)
Uy U oo Uy

Ac?*function u=u (X;a) (shown in equation (2)) is called a complete integral in U x Aprovided

(i) u(x;a) solves the PDE(1) for eacha e A

(i) rank(Dau, D)%au): n (xeU,aeAh)

Note: Condition (ii) ensuresu (X; a)”depends on all the n independent parameters d;, ..., &, .
Example 1: The eikonal equation,
|Du|=1 (4

Introduced by Hamilton in 1827 is an approximation to the equations which govern the behaviour of light
travelling through varying materials. A solution, depending on parameters|a| =1b e R is

u(x;a,b)=ax+b .. (5
Example 2: The Clairaut’s equation is the PDE
x.Du+ f (Du)=u ... (6)
where f:R" > Ris given.
A complete integral is
u(x;a)=ax+f(a) (xeU) .. (D

foraeR".
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Example 3: The Hamilton-Jacobi Equation

u,+H (Du)=0 .. (8)
with H :R" — Ris given andU =U(X,t):R" xR — R .A solution depending on parametersa € R",b € Ris

u(xt;a,b)=asx—tH(a)+b .. (9)

where t>0.

Remark: For simplicity, in most of what follows, we restrict ton =2. We call the two variables X, Y.
Thus, we reduce to the case

F(u,.u,,u,xy)=0 . (7)
In this case, the solutionu =u(X, y)is a surface in R®. The normal direction to the surface at each point is
given by the vector (u,,u,,~1).
5.2 Envelope

Definition: Letu=u (x;a) be ac*function of x and U and A are open subsets of R". Consider the vector

equation
Du(xa)=0 (xeU,aeA) (D
Suppose that we can solve (1) for the parameterdas aC* function of X,
a=¢(x) - (2)
Thus
Du(x4(x))=0 (xeU) ..(3)
We can call
v(x)=u(x4(x)) (xeU) (%)

is the envelope of the function {u (; a)}

acA

Remarks: We can build new solution of nonlinear first order PDE by forming envelope and such types
of solutions are called singular integral of the given PDE.

Theorem: Construction of new solutions
Suppose for eacha € A as above thatu=U ( a) solves the partial differential equation
F(Du,u,x)=0 ..(5)

Assume further that the envelopeV, defined (3) and (4) above, exists and is aC*function. ThenVsolves (5)
as well.
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Proof: We have V(X) :u(x;¢(x))

for i=1..,n.

Hence for each x e U,
F(Dv(x),v(x),x)= F(Du(x;¢(x)),u(x;¢(x)),x):0
Note: The geometric idea is that for eachxeU , the graph of V is tangent to the graph ofu(.;a) for
a=¢(x). ThusDv=Du(.;a) at X, fora=¢(x).
Example 4: Consider the PDE
u*(1+[Duf’) =1 .. (6)

The complete integral is
b

u(x,a):i(1—|x—a|2) (|x—a|<1)
We find that
Dy
N\h
(1—|x—a| )

provided a=¢(X)=X.

Thusv = +1are singular integrals of (6).
5.3 Characteristics

Theorem: Structure of Characteristics PDE
Let U C?(U) solves the non-linear PDE

F(Du,u,x)=0 inU

Assume X(.) = (X, X%,...,X") solves the ODE x = D,F(p(s), 2(3). X(5)).

where
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p(9)=Du(x()). 2(s)=u(x())
Then p(.) solves the ODE.

p=-D_F(p(s).2(5).x())-DF (p(s). 2(5). () p(S) (3)

and z(s) solves the ODE z(s) = D,F (@ z(s),@).@ for those s such that X(s) U
Proof: Consider nonlinear first order PDE
F(Du,u,x)=0in U .. (D)
subject now to the boundary condition
u=g onl o ()
where ' < oU and g : " — Rare given.

We suppose that F and g are smooth functions. Now we derive the method of characteristics which solves
(1) and (2) by converting PDE into appropriates system of ODE. Initially, we would like to calculate u(x)
by finding some curve lying within U, connecting x with a point X, € I" and along which we can calculate
u. Since equation (2) saysu = g on I' . So we know the value of u at one end x, and we hope then to able
to find the value of u all along the curve, and also at the particular point x.

Let us suppose the curve is described parametrically by the function
x(s)=(x"(s),....x"(s)) , the parameter s lying in some subinterval of R

Assuming Uis ac?solution of (1), we define

z(s)=u(x(s)) .. 3)
Set
p(s)= Du()_<(s)) (4
ie p(s)=(P*(s). P"(s))  where
p'(s)=u, (x(s)) (i=L..n). .5

Soz(.) gives the values ofUalong the curve and B() records the values of the gradient Du .

First we differentiate (5)

§(5)= 20, (X(5))¥' (9 )



Nonlinear Partial Differential Equations 135

where = —
ds
We can also differentiate the PDE (1) with respect to X

 oF () % ok oF ~
JZ_l:a—loj(Du,u,X)uxjxi(x(s))x (s)+E(Du,u,x)uxi+&(Du,u,x)_0 (D

We set
% oF — - ,
X (s) =a—p(p(8),2(8),><(8)) (j=12,..,n) .(8)

Assuming (8) holds, we evaluate (7) at X = >_<(s) and using equations (3) and (4), we have the identity

oF OF (— .

i%(_p(sy 2(5).X(s))u,, (>_<(S))+E(B(s), 2(s).x(s)) p (S)+a_x( p(s).2(s).X(s))=0Put this

e;pression and (8) into (6)
i oF (— = oF (— - i
p (s)z—&(p(s),z(s),x(s))—g(p(s),z(s),x(s))p (s) ...(9)

Lastly, we differentiate (3)
, 5 ou (= i Lo, \OF (= -
z(s)=;a—;(x(s))x‘(s)=21:p’(s)a—p(p(s),z(s),x(s)) ...(10)

the second equality holding by (5) and (8). We summarize by rewriting equation (8)-(10) in vector notation

p(s) =-D,F (P(s), z(s), X(s) )~ D,F (P(s), 2(s), X(5) )- P(s)

2(s) = D,F (P(s), 2(s), X(s)).P(s) ..(11)

x(s) = D,F (P(s), z(s), X(s))

This system of 2n+1 first order ODE comprises the characteristic equation of the nonlinear first order
PDE (1).

The functions p(.)=(p*(.),-.. p" (1)), 2(-), X(-)=(x"(.)..... X" (.)) are called the characteristics.

Remark: The characteristics ODE are truly remarkable in that they form a closed system of equations for
x(.),z(.)=u (?((.))and p(.)=Du (>_<(,)) , whenever u is a smooth solution of the general nonlinear PDE(1).

We can use X (s) in place of X(s).

Now we discuss some special cases for which the structure of characteristics equations is especially
simple.
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(a) Article

Let us consider the PDE of the form F (Du,u, x) =0to be linear and homogeneous and thus has the form
F (Du,u,x)=b(x).Du(x)+c(x)u(x)=0 (xeU) e
Equation (1) can be written as
F(p.z,x)=b(x).p+c(x)z

So characteristics equations are

X(s)=D,F =b(x)

- b(;((s)) (From last expression)
and 2(s)= DpF.B - b(}(s)),ﬁ(s) (From last expression)
= —c(>_<(s)) 2(s)

Thus

x(s)=b(x(s))
2(5):—(:()_((5))2(5)

comprise the characteristics equations for the linear first order PDE(1).

(2

Example 5: Solve two dimensional system

Xlux2 - XZUX1 =uinU (3)
u=g onI

where U is the quadrant{x, >0,x, >0}andT"={x >0,x, =0} coU
Solution: Comparing (3) with (1), we have

F(Du,u,x)=xu, —xu, —u=0

= (=X, xl).(uxl,UXZ)—u =0
We get,

b(X(5))=(%. %), c(x(s))=-1
Now b(X(s)) = (B (x).b, (x))
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:(_X21X1)
=D (x)=-%,b,(x)=x,

The characteristics equations are

and 2(
(

)
Therefore 2(s)=z(s)
(

(
Now %(8)=-%(s)=-x(s)
=% (s)+x,(s)=0

Auxiliary equation is D* +1=0

= D=+
= X,(S)=c,coss+c,sins
So X,(s)=c,coss+c,sins
Integrate (5) w.r.t.s
X,(s)=c,sins—c,coss+c,
From (5), we have
% (s)=—csins+c,coss
Comparing (4) and (8)
—X, (s)=—¢,sins+c, coss
= X,(s)=c,sins—c,coss
From (7) and (9)

c,=0

(4

.. (5
...(6)

()

..(8)

...(9)
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Therefore X,(s)=c,sins—c, coss ...(10)
Taking s =0 in (10)
X, (0)=—c,
=¢,=0 [F:{(xl(s),xz(s))|x2:0at 3:0}}
Therefore X (s)=c,coss ..(11)
and X,(s)=c,sins .. (12)
Put s=0 in (11)
x(0)=c,
Letx’ =x (0)=c,
Put value of ¢, = X° in (11) and (12)
x,(s)=x"coss
X,(s)=x"sins
Also we have
2(s)=2(s)
dz
DE_ Z(S)
Integrating w.r.t.s
logz =s+logz°
z
= IogZ—O: S
=1z7=17%
=12(0)=2"
Therefore z(s)=1z(0)e’
Also u=gon T
=u(x(s).0)=g(x(s)) .(13)

We know that U
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S0 u(x() %, (5))=2(s)
=u(x(0),0)=z(0)=2° ..(14)

Put (14) in (13)

Thus we have

X (s)=c,coss=x’coss
and X,(s)=c,sins=x"sins
and z(s)=g(x’)e’
Now select s>0 and x° > 0, so that

(%, %) =(%(s),x, (s))=(x"coss,x’sins)
= x =x"cossand X, =x’sins

Consider,
X7 +x} = X" (sin® s+cos’ s) = x"
= X +% =X°
We have
tans =2
X,
=s=tan" (ﬁJ
X,
Thus

which is the required solution.
(b) Article

A quasilinear PDE is of the form

F(Du,u,x)= b(x,u(x)).Du(x)+c(x,u(x)) =0 .. (D
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Equation (1) can be written as
F(p.z.x)=b(x,z).p+c(x,2)
Now Dszb(x,z)
Thus the characteristic equations becomes
X(s)=D,F =b(X (s),z(s))

and 2(s)=D,F.p

p

Consequently

{X(s)=b(x(5),2(s)) @)

2(s)=-c(X(s),z(s))
are the characteristic equations for the quasilinear first order PDE (1).

Example 6: Consider a boundary-value problem for a semilinear PDE

u, +u, =u®inU
..(3)

u=g onl
where U is half-space {X, >0}and I'={x,=0}=0U.
Solution: Comparing (3) with (1), we have

b= (1,1) and ¢ =—z?

Then (2) becomes

Consequently
X (s)=x"+s,%x*(s)=s

z(s)= 2 Q(XO)

1-s2° 1-sg (x°)
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where X’ € R,5 >0, provided the denominator is not zero.

Fix a point(X, X, ) €U . We selects > 0and x° € R, 50 that(x,,X,) = (x'(s),x* (s)) =(x° +5,5)

e X =X —X,S=X,.

Then

U(Xl’xz):U(Xl(S),Xz(s)):Z(S):M

_9(x—%)
1_X29(X1_X2

),1—ng(x1—x2)¢0

which is the required solution.
(c) In this case, we will discuss about characteristics equation of fully nonlinear PDE.

Example 7: Consider the fully nonlinear problem

u,u, =uinU
u=x; onl

()

whereU ={x, >0}, I'={x =0} =0U
Here F (p,z,X) = p,p,—Z . Then the characteristic equations becomes

pl — pl pZ — pZ

2=2p'p’

)-(l — p2 )-(2 — pl

We integrate these equations and we find
X'(s)=p; (e ~1),x*(s)=x"+p; (e* ~1)
2(s)=12"+p;p3(e* -1)

0

p'(s)=pie’, p*(s) = pye’

Sinceu=%, on I, p? =u, (0,x°)=2x".

0
. . X
Therefore, the PDE u.u, =u itself implies p? p) = z° =(x°)2, and so plO = ? .

1

Thus we have,
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0

X' (s)=2x"(e° -1),x*(s) = X?(es +1)

0
Fix a point(X,,X,) €U . Choose s and x° so that (x, %,) = (X(s), X*(s)) = (2x°(e° —1),)‘?(es +1))

and so
u(x,%)=u (xl(s),x2 (s)) =2(s)= (x")2 e
_ (x1+4x2)2
16
Exercise:

1. Find the characteristics of the following equations:
(@) XU, +XU, =2u, u(x,1)=g(x)

(b) u +b.Du=f in R"x(0,0),beR", f=f(xt)
2. Prove that the characteristics for the Hamiltonian-Jacobi equation
u,+H(Du,x)=0

are

p(s)=-D,H(p(s).x(s))
2(s)=D,H (B(S)j(s)).ﬁ(s)- H (B(S)j(s))
X(s)=D,H (P(s).X(s))

5.4 Hamilton-Jacobi Equation
The initial-value problem for the Hamilton-Jacobi equation is

u,+H(Du)=0in R"x(0,0)
u=g  onR"x{t=0}
Hereu:R"x[0,00) > Ris the unknown,u=u(xt), andDu=Du=(u,,...u, ). The Hamiltonian

H :R" — Rand the initial function g : R" > R are given.
Note: Two characteristic equations associated with the Hamilton-Jacobi PDE

u,+H(Du,x)=0



Nonlinear Partial Differential Equations 143

are Hamilton’s ODE

x=D,H (P(s).X(5))

p=-D,H (). X))

which arise in the classical calculus of variations and in mechanics.
5.4.1 Derivation of Hamilton’s ODE from a Variational Principle (Calculus of Variation)
Article: Suppose that L: R" xR" — R is a given smooth function, which is called Lagrangian.

We write

L=L(0X)=L(0hyer Oy Xy X,)

and

Where §,X€R"

For any two fix points X, Y € R"and a timet > 0and we introduce the action functional
t
H[W(.)]=[L(W(s) W(s))ds )
0
where the functions w(.) = (wl(.),w2 ()wn ()) belonging to the admissible class

A={w(.)eC?([0,t];R")

w(0) =y, w(t)=x}
Thus, aczcurvev_\/(.)belongs to Alif it starts at the point Y at time 0 and reaches the point Xat time t.

According to the calculus of variations, we shall find a parametric curve X() € Asuch that
1[x()]= min| [w(.)] .3

i.e., we are seeking a function X (.)which minimizes the functional I [.]among all admissible candidates

V_V(.)EA.
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5.4.2 Theorem: Euler-Lagrange Equations

Prove that any minimizer Y() € Aofl [0] solves the system of Euler-Lagrange equations

“) —%(DqL(X*(S),Y(S)))+ D,L(X(s)) (0<s<t)
Proof: Consider a smooth functionV : [0,t] — R"satisfying
v(0)=v(t)=0 .. (3
andv =(v*,...,v")
Force R, we define
W(.)=X()+cv(.) ... (6)

Then, W(.) belongs to the admissible class A and X (.) being the minimizer of the action functional and so

%)= [w()]

Therefore the real-valued function

i'(0)=0 .. (D
providedi'(0) exists.
Next we shall compute this derivative explicitly and we get
i(c)= [L(%(s)+ 0 (s), R (5) +c7(5))ds
0
And differentiating above equation w.r.t. ¢, we obtain
i'(c):jzn: L, (X+CV,Xx+CV V' + L, (X+CV,x+CV )v'ds
=

Setc = 0and using (7), we have

L, (%,X)V +L, (X,X)vids (8)

i=1

Ozi'(O):

[ S——

Now we integrate (8) by parts in the first term inside the integral and using (5), we have
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d L (5N <L (x.%)Ivid
_E( qi(x,x))+ . (X.%) |vids

This identity is valid for all smooth functionsv = (vl,...,vn ) satisfying (5) and so

_d
ds

(L (%,%))+ L, (x,x)=0

foro<s<t,i=1..,n

Remark: We see that any minimizeri(.) e Aofl [] solves the Euler-Lagrange system of ODE. It is also
possible that a curve X(.)eAmay solve the Euler-Lagrange equations without necessarily being a

minimizer, in this case X (.)is a critical point of I [.]. So, we can conclude that every minimizer is a critical

point but a critical point need not be a minimizer.

5.4.3 Hamilton’s ODE:

Suppose c?function X() is a critical point of the action functional and solves the Euler-Lagrange equations.
Set

1) p(s)=D,L(x(s).x(s))  (0<s<t)
where P(.)is called the generalized momentum corresponding to the position X(.) and velocity X (.).
Now we make important hypothesis:
(2) Hypothesis: Suppose for all X, P € R" that the equation
p=D,L(a.x)
can be uniquely solved for g as a smooth functionof pandx, q =Qq= ( P, x)

Definition: The Hamiltonian H associated with the Lagrangian L is
H(p.x)=pa(p.x)-L(q(p.x).x) (p.xeR")
where the functiond(.,.)is defined implicitly by (2).
Example: The Hamiltonian corresponding to the Lagrangian L(q, x) :%m|q|2 —g(x)is
H(pox)= 5ol +4(x)
2m

The Hamiltonian is thus the total energy and the Lagrangian is the difference between the kinetic and
potential energy.
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5.4.4 Theorem: Derivative of Hamilton’s ODE

The functions Y(.)and ﬁ() satisfy Hamilton’s equations

(=D H(BOXE)
; [ o) O
Furthermore, the mapping s > H ((s),X(s))is constant.
Proof: From (1) and (2), we have
X(s)=a(p(s)X(s))
Let us write (.)=(g"(),-q"())
We compute fori=1,...,n
oH o og¢ oL o oL
S (PR=Xp g (pX)- (0 )51 (Pr)= 52 (@)
= —%(q, X) (using (2))
and B (p 0= (P22 p 2 (P~ (@1) 2 (9
=q'(p,x) (again using (2))
Thus
o (PO)X(6))=0'(p(5).(5)=x' (3
e 2 (5(6).4(5) =2 (a((5).4(5) K(6)) =~ = 4(5)x(5)
8 2 (a9 x()
==p'(s)
Hence
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" oH (—6H ). oH (oH
_y RO HpR g
i1 Op; ( X j OXi (api]

which shows that the mapping S — H (p(s), X(S)) is constant.

5.5 Legendre transform:

Assume that the Lagrangian L : R" — R satisfies following conditions

(i)  the mappingq > L(q)is convex (D
iy im =@ Q)
d=>=|q|

whose convexity of the mapping in equation (2) implies L is continuous.

Note: In equation (2), we simplify the Lagrangian by dropping the x-dependence in the Hamiltonian so
that afterwards H=H(p).

Definition: The Legendre transform of L is

(3) L*(p)=sup{pa-L(a)} (peR")

qeR"
Remark: Hamiltonian H is the Legendre transform of L, and vice versa:
L=H*H=L* )
We say H and L are dual convex functions.
Theorem: Convex duality of Hamiltonian and Lagrangian
Assume L satisfies (1),(2) and define H by (3),(4)

()Then
the mapping p — H (p)is convex
And
Lm% -
(i)Furthermore
L—H* . (5)

Proof: For each fixedq, the function p— p.q—L(q)is linear, and the mapping

p>H(p)=L*(p)=sup{p.g—L(q)} isconvex.

qeR"

Indeed, if 0<7<1,p.peR",
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H(rp+(1-7) p)=sup{(rp+(1~7) p) a- L(a)}

<rsup{pq-L(a)}+(1-7)sup{pa-L(a)}

=7H(p)+(1-7)H (D)

Fixany A>0,p=0. Then

H(p)=sup{pa-L(q)|

geR"

) [

> A|p|—max L

B(0,4)

Therefore, Iim‘i‘nf H|(;O) >/ forall A>0
P Ip

From (4), we have

H(p)+L(a)=pg Vp,geR"
and
L(a)zsup{pg—H(p)j=H*(a)
peR"
On the other hand

150 =sfoa-s0{pr L0}

peR"

=sup inf { p.(q-r)+ L(I‘)}

peR" rer"

since q > L(q)is convex.
Let there exists s € R" such that

L(r)>L(q)+s.(r-q) (reRr")
Taking p=sin (6)

H*(q)zinf {s.(q—r)+L(r)j=L(a)

.. (6)
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5.6 Hopf-Lax Formula

Consider the initial-value problem for the Hamilton-Jacobi equation

{ut +H(Du)=0in R"x(0,0)

u=gon R"x{t=0} - @)

We know that the calculus of variations problem with Lagrangian leads to Hamilton’s ODE for the
associated Hamilton H. Hence these ODE are also the characteristic equations of the Hamilton-Jacobi
PDE, we infer there is probably a direct connection between this PDE and the calculus of variations.

Theorem: If x e R" andt > 0, then the solutionu =u(x,t) of the minimization problem

u(x,t)= mf{_:[L W(s))ds+g(y)[w(0)=y,wW(t)= x} .. ()

u(x,t):min{tL(¥j+g(y)} ...03)

where, the infimum is taken over all C* functions. The expression on the right hand side of (3) called
Hopf-Lax formula.

Proof: Fix any Y € R" and define
w(s)=y+2(x-y)  (0ss<Y)

Then w(0)=y and w(t)=y

The expression (2) of u implies

u(xt)< j; L(W(s))ds+g(y) :tL(%)Jr g(y)
and therefore

- -y

1) <inf JtL
u(xt) ;QRH{ ( t ] g(y)}
IfW(.)is any C*function satisfying W(t) =X, then we have

t t
L[%!W(s) dsJ < :t_L-([ L(W(s))ds (by Jensen’s inequality)

Thus if we write y =w(0), we find
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and consequently

Hence

u(xt)= ;nrf {tL[%j-F g (y)}

Lemma 1: (A functional identity)

Foreachx e R"and0<s<t, we have

u(x,t)=mip{(t—s)L(Pj+u(y,s)} (D)

yeR —-S

In other words, to computeU(.,t), we can calculate u at time s and then use U (., s) as the initial condition

on the remaining time interval [s,t].

Proof: Fix Y€ R",0< s <tand choose z € R" so that

u(y,s)=s (y; j+g( ) .. ()

Now since L is convex andu =(1——J(X_ yj+§ y- , we have
t t t-s t
t t t-s t S

Thus
t—s S

u(x,t)étL(thj+g( )<t s)L(X yj+sL[y_ j+g(z)

t-s

:(t—s)L[ yj+u(y 5)

By (2). This inequality is true for each Y € R". Therefore, since y - u(y,s)is continuous, we have

yeR -5

u(x,t)Smirnl{(t—s)L(t y]+u(y s)} ...(3)
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Now choose w such that

u(x,t)th(X;—W)ﬂ;(W) @)

S S _ _ _
andsety::—X+(1——jW.ThenX y_X-W_Yy-w
t t t—s t S

Consequently

By (4). Hence

min{(t—s)L(ﬂ)+u(y,s)}£u(x,t) ..(5)

yeR" t—s
Lemma 2: (Lipschitz continuity)

The function u is Lipschitz continuous in R" x[0,e0) ,and u=g on R"x{t=0}.
Proof: Fix t>0,X,X€ R". Choose Y € R" such that
X_
tL(Tijrg(y):u(X,t) ....(6)

Then

Hence
u(%,t)-u(xt)<Lip(g)[R—x|
and, interchanging the roles offand X, we find

u(R,t)—u(x,t)| < Lip(g)|x—%] (D)
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Now select x € R", t>0. Choosing Y = X in (*), we discover
u(x,t)<tL(0)+g(x) ..(8)

Furthermore,

u(xt)= min{tL(%jJrg(y)}

yeR"

>g(x)+ min{—Lip(g)IX— y|+t|_(¥)}

yeR"

=g(x)-tmax{Lip(g)|z|-L(2)} (Z:¥j

=g(x)-t max max{w.z-L(z)}

WEB(O, Lip(g)) zeR"

= g(x)- H
9(x)-t,mex

This inequality and (8) imply
u(x,t)—g(x)|<Ct

For
C:=max (‘L(O)‘,B(m%))w |) .. 9)

Finally select X€ R",0<f<t. Then Lip(u(.,t))ﬁ Lip(g) by (7) above. Consequently Lemma 1 and
calculations like those employed in step 2 above imply

u(x,t)—u(x.f) <Clt—f|
For the constant C defined by (9).

Theorem: Solving the Hamilton-Jacobi equation

Suppose X€ R",t >0 and u defined by the Hopf-Lax formula

u(xt)= min{tL(%jJrg(y)}

yeR"
is differentiable at a point (X,t) e R"x(0,%0). Then

U, (x,t)+H(Du(xt))=0.



Nonlinear Partial Differential Equations 153

Proof: Fixq € R",h>0. Oowing to Lemma 1,

u(x+hq,t+h):min{hL(WJ+u(y,t)}

yeR"
<hL(q)+u(xt).
Hence
u(x+hg,t+h)-u(xt
(eratshuls) )
Let h — 0", to compute
q.Du(xt)+u, (x,t)<L(q).
This inequality is valid for allq € R", and so
u, (x,t)+H (Du(xt))=u,(x,t)+max{q.Du(x,t)-L(q)} <0 ...(10)
qeR"
The first equality holds sinceH = L.
Now choose z such thatU(X,t):“-(EjJrg(z)- Fix h>0 and setS=t—h,y=%x+(1—%jz_

Then X=%2_Y~2 and thus
t S

That is,

Let h — 0*to compute
%.Du(x,t)wt (x,t)> L(%j

Consequently
u (xt)+H (Du(xt))=u (xt)+ r;rl%Z({q.Du (x,t)—L(q)}

Zut(x,t)+¥.Du(x,t)— L(Ej

>0
This inequality and (10) complete the proof.
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Lemma 3: (Semiconcavity)

Suppose there exists a constant C such that
g(x+z)—Zg(x)+g(x—z)£C|z|2 (11)
for all X,Z € R" . Define u by the Hopf-Lax formula (*). Then
u(x+z,t)-2u(xt)+u(x—zt)<Clz[
forallx,zeR"t>0,

Remark: We say g is semiconcave provided (11) holds. It is easy to check (11) is valid if g is Cc* and

sup ng‘ <oo. Note that g is semiconcave if and only if the mapping x — g (x) + %|x|2 is concave for some
Rn

constant C.
X_
Proof: Choose Y € R" so thatu(X,t) :tL(Tyj+ g(y). Then puttingy +z and Yy — zin the Hopf-Lax

formulas foru(x+2z,t)andu(x—z,t), we find

u(x+z,t)—2u(x,t)+u(x—zt)

s{t%%}rg(w z)}—Z{tL %)Jrg(y)}

J{tL(?jJr g (y—z)_

=9(y+z)-29(y)+9(y-2)
<Cl’,  by(11)

Definition: AcC?convex function H : R" — R is called uniformly convex(with constant@ > 0) if

(12) Y H,, (p)&E 20l forall p,5 € R’
i j=1
We now prove that even if g is not semi-concave, the uniform convexity of H forces u to become semi-
concave for times t>0: it is a kind of mild regularizing effect for the Hopf-Lax solution of the initial- value
problem.
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Lemma 4: (Semi-concavity Again)

Suppose that H is uniformly convex (with constantd) and u is defined by the Hopf-Lax formula. Then

u(x+ z,t)—2u(x,t)+u(x—z,t)§%|z|2

forallx,zeR"t>0,

Proof: We note first using Taylor’s formula that (12) implies

1 0
(p1;p2j<2H(p1)+ H(p,)—glp—pf (13)
Next we claim that for the Lagrangian L, we have estimate
1 1
FL)+ 5@ <t 5% g 19

Forall g;,0, €R". Verification is left as an exercise.

Now choose y so thatu(X,t) = tL( tyj g(y). Then using the same value of y in the Hopf-Lax formulas
foru(x+z,t)andu(x-z,t), we calculate

u(x+z,t)—2u(x,t)+u(x—zt)

s 520

2
<ot ZtZ

<L,
ot
The next-to-last inequality following from (14).

Theorem: Suppose X € R"t>0, and u defined by the Hopf-Lax formula is differentiable at a point
(X,t) eR" X(O,oo)_ Then

ut(x,t)+H(Du(x,t))=O
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Proof: Fix( € R",h>0and using Lemma (1), then we have

u(x+hq,t+h):min{hL(WJ+u(y,t)}

yeR"

<hL(q)+u(xt)

Hence
u(x+hg,t+h)—u(xt
(erat)-uxt) )
Leth — 0", to compute
q.Du(xt)+u, (x,t)<L(q) forallqeR"

and therefore

u (x,t)+H(Du(xt))=u,(x,t)+ r;l%%({q.Du(x,t)— L(g)}<0

The first equality holds sinceH = L*

Now choosez such that

u(x,t):tL[¥j+g(z)

Fix h>0 and set

Then X-z — y-z

and

Leth — 0" to compute
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%,DU(X,t)-l_ut (xt)2 L(¥j

Consequently

U, (x,t)+H (Du(x,t))=u, (x,t)+r¥§§{q.Du(x,t)— L(a)}

> U, (x,t)+¥.Du (x.t)- L(%}
>0

Hence U, (x,t)+H (Du(x,t))=0

5.7 Weak Solutions and Uniqueness

Definition: We say that a Lipschitz Continuous functionu:R"x[0,50) > R is a weak solution of the

initial-value problem

5 {ut+H(Du):0in R" x(0,0)

u=gon R"x{t=0}
provided
@u(x0)=g(x)  (xeR")

(b) U, (x,t)+H (Du(xt))=0for ae(xt)eR"x(0,)
@u(x+zt)-zu(x,t)+u(x—zt)< c(1+%]|z|2

for some constantc > Oand all X,Z€R",t>0 .
Theorem: Uniqueness of Weak Solution

His convex and
Assume H isc?®and satisfies . H(p) N and §:R" >R is Lipschitz continuous. Then there
Q0

e |p|
exists at most one weak solution of the initial-value problem (15).

Proof: Suppose thatUandare two weak solutions of (15) and writew:=u—0 .

Observe now at any point(Y,s)where bothUandu are differentiable and solve our PDE, we have

W (Y,5)=U,(ys)-0(y.s)
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=—H (Du(y,s))+H(Dd(y,s))

:_E%H (rDu(y,s)+(L-r)Di(y.s))dr

1

=—[DH (rDu(y,s)+(1-r)Du(y,s))dr.(Du(y,s)-Da(y,s))

0

=-b(y,s).Dw(y,s)
Consequently

W, +b.Dw=0 ae. ... (16)

Write vi=¢(w)>0, where ¢: R —[0,0) is a smooth function to be selected later. We multiply(16) by

¢ (w)to discover

Vv, +b.Dv=0 a.e. ..(17)

Now choose & > 0and defineU® :=7,*u,0° :=7_*U, where 7, is the standard mollifier in the x and t
variables. Then we have

‘Dug

< Lip(u),|Da*

< Lip(0), .. (18)
and
Du® — Du,Di* - DU ae., ase -0 ...(19)

Furthermore inequality(c) in the definition of weak solution implies

< 1
D%?,D%° <C (1+—) I
S
For an appropriate constant Cand alle >0,Y € R", $>2¢ . Verification is left as an exercise.

Write

1

b, (y.s)= j DH (rDu‘E (y,s)+(1-r)Da° (y,s))dr ... (20)

0

Then (17) becomes
v, +b,.Dv=(b, —b).Dv a.e.
Hence

v, +div(vh, ) =(divb, Jv+(b,—b).Dv ae. .21
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Now

divb, —IZH (rDu® +(1-r) Da* )( e H(1-r)0 Xka)dr

o k,I=1

< c(uéj ..(22)

For some constant C, in view of (17) and (19). Here we note that H convex implies D°H >0.
FixX, € R",t, >0, and set
R :=max {|DH (p)||p| < max (Lip(d))} ...(23)
Define also the cone
C={(x1)]0<t<ty,|x—x|<R(t,—t)}

Next write

é(t)= I v,dx—R j vdS
B(%p.R(tyt)) 8B(%.R(tp )

= | —div(vb,)+(divb, )v+(b, ~b).Dvdx

B(%.R(to-t))

R [ s by (21)
0B(%,R(ty—t))

=- _[ v(b,v+R)dS
+ | (divb,)v+(b, —b).Dvdx
B(%R(to-t))

< | (divb,)v+(b, b).Dvdx by (17), (20)

B(%,R(t-t))

_C(1+%Je(t)+ ( I (b, —b).Dvdx

B(%.R(to-1))
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by (22). The last term on the right hand side goes to zero as¢ — 0, for a.e.t, > 0, according to (17), (18)
and the Dominated Convergence Theorem.

Thus

(24) é(t)SC(l+%je(t) fora.e. 0<t<t,

Fix 0< ¢ <r <tand choose the function ¢(z) to equal zero if
|z]< e[ Lip(u)+Lip(d)]
and to be positive otherwise. Sinceu =donR" x{t =0},
v=¢(W)=¢(u-0)=0 at{t=¢}

Thus e(g) =0. Consequently Gronwall’s inequality and (24) imply

Hence
u—d|<ef Lip(u)+Lip(d)] on B(X,R(t,~r))
This inequality is valid for alle >0, and sou=din B(XO,R(tO—r)). Therefore, in particular,

U (%, t)=0(Xgty).





