
 

  

CHAPTER-5 

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 

Structure 

5.1 Non-linear First Order PDE – Complete integrals 

5.2 Envelopes 

5.3 Characteristics 

5.4 Hamilton Jacobi equations (Calculus of variations, Hamilton ODE) 

5.5 Legendre Transform  

5.6 Hopf-Lax Formula 

5.7 Weak Solutions and Uniqueness 

5.1 Definition: Let U is an open sunset of Rn ,  1,...,
n

nx x x R  and let : nu U R R  . A general form 

of first-order partial differential equation for  u u x is given by  

 , , 0F Du u x  ,                                                                       … (1) 

where : nF R R U R   is a given function, Du is the vector of partial derivatives of u and ( )u x  is the 

unknown function.  

We can write equation (1) as 

                    
1, 2 , 1 2

( , , )

( ..., , , , ,..., )
n n

F F p z x

F p p p z x x x




  

for  , ,np R z R x U   . 

Here, “p” is the name of the variable for which we substitute the gradient  Du  and “z” is the variable for 

which we substitute ( )u x . We also assume hereafter that F is smooth, and set  
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Remark: The PDE  , , 0F Du u x  is usually accompanied by a boundary condition of the form u g

on .U  Such a problem is usually called a boundary value problem. Here our main concern is to search 

solution for the non-linear PDE 

Complete Integral: Consider the non-linear first order PDE 

 , , 0F Du u x                                                            … (1) 

Suppose first that nA R is an open set. Assume for each parameter  1,..., na a a A  , we have a 2C

solution 

     
 ;u u x a                                                              …   (2) 

of the PDE (1) and  

                         

1 1 1 1

2 1 2 2

1

2

...

...
,

... ... ... ...

...

n

n

n n n n

a x a x a

a x a x a

a xa

a x a x a

u u u

u u u
D u D u

u u u

 
 
 

  
 
  

                      … (3) 

A 2C function  ;u u x a (shown in equation (2)) is called a complete integral in U A provided 

(i)  ;u x a  solves the PDE(1) for each a A  

(ii)  2,rank D u D u n
a xa

    ,x U a A   

Note: Condition (ii) ensures  ;u x a ”depends on all the n independent parameters 1,..., na a ”. 

Example 1: The eikonal equation, 

                                            1Du                                                               …  (4) 

Introduced by Hamilton in 1827 is an approximation to the equations which govern the behaviour of light 

travelling through varying materials. A solution, depending on parameters 1,a b R  is 

                                               ; , .u x a b a x b                                            … (5) 

Example 2:  The Clairaut’s equation is the PDE 

                                                 .x Du f Du u                                          …  (6) 

where : nf R R is given. 

A complete integral is 

               ;u x a a x f a        x U                  … (7) 

for na R . 
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Example 3: The Hamilton-Jacobi Equation 

                                                           0tu H Du                                        … (8) 

with : nH R R is given and  , : nu u x t R R R   .A solution depending on parameters ,na R b R  is 

                                                           , ; ,u x t a b a x tH a b                    … (9) 

where 0t  . 

 Remark: For simplicity, in most of what follows, we restrict to 2n  . We call the two variables ,x y . 

Thus, we reduce to the case 

                                                         , , , , 0x yF u u u x y                                  … (7) 

In this case, the solution  ,u u x y is a surface in 3R . The normal direction to the surface at each point is 

given by the vector  , , 1x yu u  . 

5.2 Envelope 

Definition: Let  ;u u x a be a 1C function of x and U and A are open subsets of Rn. Consider the vector 

equation 

                                                      ; 0aD u x a       ,x U a A                        … (1) 

Suppose that we can solve (1) for the parameter aas a 1C function of x , 

                                                             a x                                                 …  (2) 

Thus 

                                                    ; 0aD u x x        x U                             …(3) 

We can call  

                                                      : ;v x u x x      x U                            …(4) 

is the envelope of the function   .;
a A

u a


 

Remarks: We can build new solution of nonlinear first order PDE by forming envelope and such types 

of solutions are called singular integral of the given PDE. 

Theorem: Construction of new solutions 

Suppose for each a A as above that  .;u u a
 
solves the partial differential equation 

                                                     , , 0F Du u x                                                …(5) 

Assume further that the envelope v , defined (3) and (4) above, exists and is a 1C function. Then v solves (5) 

as well. 
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Proof: We have     ;v x u x x   

                                                             
1

; ,
i i j i

m
j

x x a x

j

v x u x x u x x x  


   

                                                                  ;
ixu x x  

for 1,...,i n . 

Hence for each ,x U  

                                                             , , ; , ; , 0F Dv x v x x F Du x x u x x x      

Note: The geometric idea is that for each x U , the graph of v is tangent to the graph of  .;u a for

 a x . Thus  .;xDv D u a  at x , for  a x . 

Example 4: Consider the PDE 

                                                  22 1 1u Du                                           … (6) 

The complete integral is 

                                                    
1

2 2
, 1u x a x a         1x a   

We find that 

                                                
 

 
1

2 2

0

1
a

x a
D u

x a


 

 

 

provided  a x x  . 

Thus 1v   are singular integrals of (6). 

5.3 Characteristics 

Theorem: Structure of Characteristics PDE 

Let 
2( )u C U  solves the non-linear PDE  

  , , 0F Du u x   inU       

Assume 
1 2(.) ( , ,..., )nx x x x   solves the ODE  ( ), ( ), ( )

p
x D F p s z s x s ,  

where 
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( ) . , ( ) ( (.))

Then (.) solves the ODE.

.

( ), ( ), ( ) ( ), ( ), ( ) ( ) (3)

p s Du x z s u x

p

p D F p s z s x s D F p s z s x s p s
x z

 

  

 

and z(s) solves the ODE  
.

( ) ( ), ( ), ( ) . ( )
p

z s D F p s z s x s p s for those s such that ( )x s U   

Proof:  Consider nonlinear first order PDE 

                                                  , , 0F Du u x   in  U                               … (1) 

subject now to the boundary condition 

                                                   u g   on                         …  (2) 

where U and :g R are given. 

We suppose that andF g  are smooth functions. Now we derive the method of characteristics which solves 

(1) and (2) by converting PDE into appropriates system of ODE. Initially, we would like to calculate u(x) 

by finding some curve lying within U, connecting x with a point 0
x   and along which we can calculate 

u. Since equation (2) says onu g  . So we know the value of u at one end 0x  and we hope then to able 

to find the value of u all along the curve, and also at the particular point x. 

Let us suppose the curve is described parametrically by the function 

                                            1 ,..., nx s x s x s , the parameter s lying in some subinterval of R  

Assuming u is a 2C solution of (1), we define 

                                                    z s u x s                                                    … (3) 

Set 

                                                    p s Du x s                                                … (4) 

i.e.                                                 1 ,..., np s p s p s , where 

                                               
i

i

xp s u x s      1,...,i n .                            … (5) 

So  .z gives the values ofu along the curve and  .p records the values of the gradient Du . 

First we differentiate (5) 

                                                      
1

i j

n
i j

x x

j

p s u x s x s


                          …(6) 
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where 
d

ds
   

We can also differentiate the PDE (1) with respect to x  

                                
1

, , , , , , 0
j i i

n
j

x x x

j j i

F F F
Du u x u x s x s Du u x u Du u x

p z x

  
  

  
     … (7) 

We set 

 
.

( ) ( ( ), ( ), ( )) ( 1,2,..., )
j

j

F
x s p s z s x s j n

p


 


                                  …(8) 

Assuming (8) holds, we evaluate (7) at  x x s  and using equations (3) and (4), we have the identity 

                                                             

                         
1

, , , , , , 0
i j

n
i

x x

j j i

F F F
p s z s x s u x s p s z s x s p s p s z s x s

p z x

  
  

  
 Put this 

expression and (8) into (6) 

                                  , , , ,i i

i

F F
p s p s z s x s p s z s x s p s

x z

 
  

 
                      …(9) 

Lastly, we differentiate (3) 

                                 
1 1

, ,
n n

j j

j jj j

u F
z s x s x s p s p s z s x s

x p 

 
 

 
                       …(10) 

the second equality holding by (5) and (8). We summarize by rewriting equation (8)-(10) in vector notation 

   

 

 

( ) ( ), ( ), ( ) ( ), ( ), ( ) . ( )

( ) ( ), ( ), ( ) . ( ) ...(11)

( ) ( ), ( ), ( )

x x

p

p

p s D F p s z s x s D F p s z s x s p s

z s D F p s z s x s p s

x s D F p s z s x s

  





 

This system of 2n+1 first order ODE comprises the characteristic equation of the nonlinear first order 

PDE (1). 

The functions                1 1. . ,..., . , . , . . ,..., .n np p p z x x x  are called the characteristics. 

Remark: The characteristics ODE are truly remarkable in that they form a closed system of equations for

      . , . .x z u x and     . .p Du x , whenever u is a smooth solution of the general nonlinear PDE(1). 

We can use ( )X s  in place of ( )x s . 

Now we discuss some special cases for which the structure of characteristics equations is especially 

simple. 
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(a) Article  

Let us consider the PDE of the form  , , 0F Du u x  to be linear and homogeneous and thus has the form 

              , , . 0F Du u x b x Du x c x u x             x U
                                   ….

 (1)                             

Equation (1) can be written as  

                                          , , .F p z x b x p c x z            

So characteristics equations are                        

    px s D F b x   

                                                             b x s            (From last expression) 

and                              .pz s D F p     .b x s p s     (From last expression) 

                                                                 c x s z s   

Thus 

    

      

x s b x s

z s c x s z s





  


            …(2)                                    

comprise the characteristics equations for the linear first order PDE(1). 

Example 5: Solve two dimensional system 

         2 11 2x xx u x u u in U

onu g

 


                                                       

…(3)                                        

where U is the quadrant 1 20, 0x x  and  1 20, 0x x U      . 

Solution: Comparing (3) with (1), we have 

                                           
2 11 2, , 0x xF Du u x x u x u u     

                                             
1 22 1, . , 0x xx x u u u     

We get, 

                                                 2 1, ,       1b x s x x c x s     

Now                                        1 2,b x s b x b x  
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                                                           2 1,x x   

                                            1 2 2 1,b x x b x x    

The characteristics equations are 

                                             X s b X s  

and                                        z s c X s z s   

Therefore                           z s z s  

                                                2 1,X s x s x s   

                                           1 2 2 1, ,x s x s x s x s    

                                    1 2x s x s   and    2 1x s x s                                  …(4) 

Now                               1 2 1x s x s x s     

                                  1 1 0x s x s    

Auxiliary equation is 2 1 0D    

                                             D i    

                                            1 1 2cos sinx s c s c s                          … (5) 

So                                        2 1 2cos sinx s c s c s                                …(6) 

Integrate (5) w.r.t.s 

                                         2 1 2 3sin cosx s c s c s c                             …(7) 

From (5), we have 

                                            1 1 2sin cosx s c s c s                                …(8) 

Comparing (4) and (8) 

                                          2 1 2sin cosx s c s c s     

                                        2 1 2sin cosx s c s c s                                  …(9) 

From (7) and (9) 

                                       3 0c      
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Therefore                        2 1 2sin cosx s c s c s                                   …(10) 

Taking 0s   in (10) 

                                          2 20x c   

                                     2 0c                                     1 2 2, 0 0x s x s x at s    
   

Therefore                   1 1 cosx s c s                                                      …(11) 

and                               2 1 sinx s c s                                                     … (12) 

Put 0s   in (11) 

                                      1 10x c  

Let  0

1 10x x c   

Put value of
0

1c x  in (11) and (12) 

                                            
 

 

0

1

0

2

cos

sin

x s x s

x s x s




                                                        

 Also we have 

                                             

   

 

z s z s

dz
z s

ds



 
 

Integrating w.r.t.s 

                                               

 

0

0

0

0

log log

log

0

s

z s z

z
s

z

z z e

z z

 

 

 

 

   

Therefore                             0 sz s z e  

Also                                     u g on   

                                             1,0u x s g x s        …(13) 

We know that       u x s z s  
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So                                        1 2,u x s x s z s  

                                        0

1 0 ,0 0u x z z                                       …(14) 

Put (14) in (13) 

                                         0 sz s g x e  

Thus we have 

                                       0

1 1 cos cosx s c s x s   

and                                 0

2 1 sin sinx s c s x s   

and                                 0 sz s g x e  

Now select s>0 and 0 0x  , so that 

                                     
        0 0

1 2 1 2

0 0

1 2

, , cos , sin

cos sin

x x x s x s x s x s

x x s and x x s

 

  
 

Consider, 

                                     
 

2 22 2 0 2 2 0

1 2

2 2 0

1 2

sin cosx x x s s x

x x x

   

  

                

We have 

                                     

2

1

1 2

1

tan

tan

x
s

x

x
s

x





 
   

 

 

Thus 

                                       

      

    
2

1

0

arctan
2 2

1 2

s

x

x

u x s z s g x e

u x s g x x e

 
 
 

 

  

 

which is the required solution. 

(b) Article  

     A quasilinear PDE is of the form 

                                                 , , , . , 0F Du u x b x u x Du x c x u x                    …  (1) 
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Equation (1) can be written as 

                                             , , , . ,F p z x b x z p c x z   

Now                                 ,pD F b x z  

Thus the characteristic equations becomes 

                                                ,pX s D F b X s z s   

and                                     .pz s D F p  

                                                    
      

    

, .

,

b X s z s p s

c X s z s



 
 

Consequently 

      

                           
      
      

,

,

X s b X s z s

z s c X s z s

 


 

         ..(2) 

are the characteristic equations for the quasilinear first order PDE (1). 

Example 6: Consider a boundary-value problem for a semilinear PDE 

                                          
1 2

2

x xu u u in U

onu g

  



          …(3) 

where U is half-space   2 20 0x and x U      . 

Solution: Comparing (3) with (1), we have 

                                                   1,1b  and 2c z   

Then (2) becomes 

                                                
1 2

2

1, 1x x

z z

  



 

Consequently 

                                                 

   

 
 
 

1 0 2

00

0 0

,

1 1

x s x s x s s

g xz
z s

sz sg x
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where
0 , 0x R s  , provided the denominator is not zero. 

Fix a point  1 2,x x U . We select 0s  and 0x R , so that         1 2 0

1 2, , ,x x x s x s x s s    

i.e.
0

1 2 2,x x x s x   . 

Then 

                                                         
 
 

0

1 2

1 2 0
, ,

1

g x
u x x u x s x s z s

sg x
  


 

                                                                   
 

 
 1 2

2 1 2

2 1 2

,1 0
1

g x x
x g x x

x g x x


   

 
         

which is the required solution. 

(c ) In this case, we will discuss about characteristics equation of fully nonlinear PDE. 

Example 7: Consider the fully nonlinear problem 

                                                
1 2

2

2

x xu u u in U

onu x





     ..(1) 

where    1 10 , 0U x x U        

Here   1 2, ,F p z x p p z  . Then the characteristic equations becomes 

                                                       

1 1 2 2

1 2

1 2 2 1

,

2

,

p p p p

z p p

x p x p

  



  

 

We integrate these equations and we find 

                                     

       

   
   

1 0 2 0 0

2 1

0 0 0 2

1 2

1 0 2 0

1 2

1 , 1

1

,

s s

s

s s

x s p e x s x p e

z s z p p e

p s p e p s p e

     



  


 

 

Since
2

2u x  on  ,  
2

0 0 0

2 0, 2xp u x x  . 

Therefore, the PDE
1 2x xu u u itself implies  

2
0 0 0 0

1 2p p z x  , and so

0
0

1
2

x
p  . 

Thus we have, 
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0
1 0 2

2
0 2

0
1 2 0

2 1 , 1
2

, 2
2

s s

s

s s

x
x s x e x s e

z s x e

x
p s e p s x e


   






  


 

Fix a point  1 2,x x U . Choose s and 0x so that 
0

1 2 0

1 2( , ) ( ( ), ( )) (2 ( 1), ( 1))
2

s sx
x x x s x s x e e     

and so 

                                                              
2

1 2 0 2

1 2, , su x x u x s x s z s x e    

                                                                    
 

2

1 24

16

x x
   

Exercise: 

1. Find the characteristics of the following equations: 

(a) 
1 21 2 1 1

2 , ( ,1) ( )
x x

x u x u u u x g x     

(b) . (0, ), , ( , )n n

t
u b Du f in R b R f f x t        

2. Prove that the characteristics for the Hamiltonian-Jacobi equation 

 ( , ) 0
t

u H Du x    

are  

      

             

      

,

, . ,

,

x

p

p

p s D H p s x s

z s D H p s x s p s H p s x s

x s D H p s x s

 

 



 

5.4 Hamilton-Jacobi Equation 

The initial-value problem for the Hamilton-Jacobi equation is 

                                                       
   

 

0,0

0

n

t

n

in Ru H Du

on R tu g

   


 
 

Here  : 0,nu R R   is the unknown,  ,u u x t , and  
1
,...,

nx x xDu D u u u  . The Hamiltonian

: nH R R and the initial function : ng R R  are given. 

Note: Two characteristic equations associated with the Hamilton-Jacobi PDE 

                                                           , 0tu H Du x   
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are Hamilton’s ODE 

                                                          
 

 

( ), ( )

( ), ( )

p

x

x D H p s x s

p D H p s x s





  


 

which arise in the classical calculus of variations and in mechanics. 

5.4.1 Derivation of Hamilton’s ODE from a Variational Principle (Calculus of Variation) 

Article: Suppose that : n nL R R R  is a given smooth function, which is called Lagrangian.  

We write 

                                                            1 1, ,..., , ,...,n nL L q x L q q x x   

and 

                                                          

...

1

...

1

D L L L
q q q

n

D L L L
x x x

n

  
  
   


 

    
 

 

Where , nq x R  

For any two fix points , nx y R and a time 0t  and we introduce the action functional 

                                                               
0

. ,

t

I w L w s w s ds                            …  (2) 

where the functions         1 2. . , . ,..., .nw w w w belonging to the admissible class 

                                                                  2. 0, ; 0 ,nA w C t R w y w t x     

Thus, a 2C curve  .w belongs to A if it starts at the point y at time 0 and reaches the point x at time t. 

According to the calculus of variations, we shall find a parametric curve  .x A such that 

                                                               
 

 
.

. min .
w A

I x I w


                                            … (3) 

i.e., we are seeking a function  .x which minimizes the functional  .I among all admissible candidates

 .w A . 
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5.4.2 Theorem: Euler-Lagrange Equations 

Prove that any minimizer  .x A of  I  solves the system of Euler-Lagrange equations 

    (4)                                                             ,q x

d
D L x s x s D L x s

ds
              0 s t   

Proof: Consider a smooth function  : 0, nv t R satisfying 

                                                                       0 0v v t                                 …  (5) 

and  1,..., nv v v  

For c R , we define 

                                                                      . . .w x cv                                …  (6) 

Then,  .w belongs to the admissible class A and  .x being the minimizer of the action functional and so 

                                                                    . .I x I w        

Therefore the real-valued function 

                                                                       . .i c I x cv     

Has a minimizer at 0c  and consequently 

                                                                    ' 0 0i                                                   … (7) 

provided  ' 0i exists. 

Next we shall compute this derivative explicitly and we get 

                                                        
0

,

t

i c L x s cv s x s cv s ds    

And differentiating above equation w.r.t. c, we obtain 

                                                   
10

' , ,
i i

t n
i i

q x

i

i c L x cv x cv v L x cv x cv v ds


       

Set 0c  and using (7), we have 

                                                     
10

0 ' 0 , ,
i i

t n
i i

q x

i

i L x x v L x x v ds


                        …(8) 

Now we integrate (8) by parts in the first term inside the integral and using (5), we have 
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1 0

0 , ,
i i

tn
i

q x

i

d
L x x L x x v ds

ds

 
   

 
  

This identity is valid for all smooth functions  1,..., nv v v satisfying (5) and so 

                                                           , , 0
i iq x

d
L x x L x x

ds
    

for 0 , 1,...,s t i n    

Remark: We see that any minimizer  .x A of  .I solves the Euler-Lagrange system of ODE. It is also 

possible that a curve  .x A may solve the Euler-Lagrange equations without necessarily being a 

minimizer, in this case  .x is a critical point of  .I . So, we can conclude that every minimizer is a critical 

point but a critical point need not be a minimizer. 

5.4.3 Hamilton’s ODE: 

Suppose 2C function  .x is a critical point of the action functional and solves the Euler-Lagrange equations. 

Set 

(1)                                               ,qp s D L x s x s          0 s t   

where  .p is called the generalized momentum corresponding to the position  .x
 
and velocity  .x . 

Now we make important hypothesis: 

(2) Hypothesis: Suppose for all , nx p R  that the equation  

 ,qp D L q x  

can be uniquely solved for q as a smooth function of p and x,  ,q q p x   

Definition: The Hamiltonian H associated with the Lagrangian L is 

                                                               , . , , ,H p x p q p x L q p x x                , np x R  

where the function  .,.q is defined implicitly by (2). 

Example: The Hamiltonian corresponding to the Lagrangian    
21

,
2

L q x m q x  is 

                                                              
21

,
2

H p x p x
m

   

The Hamiltonian is thus the total energy and the Lagrangian is the difference between the kinetic and 

potential energy. 



146 Partial Differential Equations 

5.4.4 Theorem:  Derivative of Hamilton’s ODE 

The functions  .x and  .p  satisfy Hamilton’s equations 

      (3)                                                
      
      

,

,

p

x

x s D H p s x s

p s D H p s x s

 


 

      (0 )s t   

Furthermore, the mapping     ,s H p s x s is constant. 

Proof: From (1) and (2), we have 

                                                                ,x s q p s x s  

Let us write       1. . ,..., .nq q q  

We compute for 1,...,i n  

                                                       
1

, , , , ,
k kn

k

ki i k i i

H q L q L
p x p p x q x p x q x

x x q x x

    
  

    
  

                                                                  ,
i

L
q x

x


 


             (using (2)) 

and                                                
1

, , , , ,
k kn

i

k

ki i k i

H q L q
p x q p x p p x q x p x

x p q p

   
  

   
  

                                                                 ,iq p x                     (again using (2)) 

Thus 

                                                        , ,i i

i

H
p s x s q p s x s x s

p


 


 

   and                                              , , , ,
i i i

H L L
p s x s q p s x s x s x s x s

x x x

  
   

  
 

                                                                            
    

 

,
i

i

d L
x s x s

ds q

p s

 
   

 

 

 

Hence 

                                                
1

,
n

i i

i i i

d H H
H p s x s p x

ds p x
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1

0
n

i i i i i

H H H H

p x x p

      
     

      
  

which shows that the mapping ( ( ), ( ))s H p s x s  is constant. 

5.5 Legendre transform: 

Assume that the Lagrangian : nL R R satisfies following conditions 

(i) the mapping  q L q is convex                                                             …(1) 

(ii) 
 

lim
q

L q

q
                                                                                           … (2) 

whose convexity of the mapping in equation (2) implies L is continuous. 

Note: In equation (2), we simplify the Lagrangian by dropping the x-dependence in the Hamiltonian so 

that afterwards H=H(p).   

Definition: The Legendre transform of L is 

        (3)                                          * sup .
nq R

L p p q L q


         np R  

Remark: Hamiltonian H is the Legendre transform of L, and vice versa: 

                                              *, *L H H L                                                …  (4)               

We say H and L are dual convex functions. 

Theorem: Convex duality of Hamiltonian and Lagrangian 

Assume L satisfies (1),(2) and define H by (3),(4) 

(i)Then 

                                        the mapping  p H p is convex 

And 

                                           
 

lim
p

H p

p
   

(ii)Furthermore 

                                            *L H                                                   … (5) 

Proof: For each fixed q , the function  .p p q L q is linear, and the mapping 

                                                   * sup .
nq R

p H p L p p q L q


     is convex. 

Indeed, if ˆ0 1, . np p R   , 
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                                                        ˆ ˆ1 sup 1 .H p p p p q L q          

                                                                                       ˆsup . 1 sup .
q

p q L q p q L q       

                                                                                     ˆ1H p H p     

Fix any 0, 0p   . Then 

                                                 sup .
nq R

H p p q L q


   

                                                         
p

p L
p

 
 

    
 

         
p

q
p


 

  
 

 

                                                        
 0,

max
B

p L


   

Therefore, 
 

lim inf
p

H p

p



  for all 0   

From (4), we have 

                                                  .H p L q p q                   , np q R   

and 

                                                sup . *
np R

L q p q H p H q


  

 

On the other hand 

                                                * sup . sup .
np R

H q p q p r L r


    

                                                              sup inf .
n

n r Rp R

p q r L r


                           …  (6) 

since  q L q is convex. 

Let there exists ns R such that 

                                              .L r L q s r q             nr R  

Taking p=s in (6) 

                                                   * inf .
nr R

H q s q r L r L q
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5.6 Hopf-Lax Formula 

Consider the initial-value problem for the Hamilton-Jacobi equation 

                                               
   

 

0 0,

0

n

t

n

u H Du in R

u g on R t

    


  
                                       … (1) 

We know that the calculus of variations problem with Lagrangian leads to Hamilton’s ODE for the 

associated Hamilton H. Hence these ODE are also the characteristic equations of the Hamilton-Jacobi 

PDE, we infer there is probably a direct connection between this PDE and the calculus of variations. 

Theorem: If nx R and 0t  , then the solution  ,u u x t of the minimization problem 

                                       
0

, inf 0 ,

t

u x t L w s ds g y w y w t x
 

    
 
                    …  (2) 

  is 

                                                  , min
x y

u x t tL g y
t

   
   

  
                                          … (3) 

where, the infimum is taken over all C1 functions. The expression on the right hand side of (3) called 

Hopf-Lax formula. 

Proof: Fix any
ny R and define 

                                                   
s

w s y x y
t

              0 s t   

Then (0) and ( )w y w t y    

The expression (2) of u implies 

                                                   
0

,

t
x y

u x t L w s ds g y tL g y
t

 
    

 
  

and therefore 

                                              , inf
ny R

x y
u x t tL g y

t

   
   

  
 

If  .w is any 1C function satisfying  w t x , then we have 

                                                
0 0

1 1
t t

L w s ds L w s ds
t t

 
 

 
                      (by Jensen’s inequality) 

Thus if we write  0y w , we find 
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0

t
x y

tL g y L w s ds g y
t

 
   

 
  

and consequently 

                                               inf ,
ny R

x y
tL g y u x t

t

   
   

  
 

Hence 

                                             , inf
ny R

x y
u x t tL g y

t

   
   

    

Lemma 1: (A functional identity) 

 For each nx R and 0 s t  , we have 

                                         , min ,
ny R

x y
u x t t s L u y s

t s

   
    

  
                  …  (1) 

In other words, to compute  .,u t , we can calculate u at time s and then use  .,u s as the initial condition 

on the remaining time interval  ,s t . 

Proof:  Fix ,0ny R s t   and choose nz R so that 

                                          ,
y z

u y s sL g z
s

 
  

 
                                            …  (2) 

Now since L is convex and 1
x z s x y s y z

t t t s t s

    
    

  
, we have 

                                         1
x z s x y s y z

L L L
t t t s t s

         
         

       
 

Thus  

                                   ,
x z x y y z

u x t tL g z t s L sL g z
t t s s

       
          

     
 

                                                                                  ,
x y

t s L u y s
t s

 
   

 
 

By (2). This inequality is true for each
ny R . Therefore, since  ,y u y s is continuous, we have 

                                                , min ,
ny R

x y
u x t t s L u y s

t s

   
    

  
                       …. (3) 
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Now choose w such that 

                                                             ,
x w

u x t tL g w
t

 
  

 
                                   …(4) 

and set : 1
s s

y x w
t t

 
   

 
. Then

x y x w y w

t s t s

  
 


. 

Consequently 

                                     ,
x y

t s L u y s
t s

 
  

 
 

                                                                      
x w y w

t s L sL g w
t s

    
      

   
    

                                                                      ,
x w

tL g w u x t
t

 
   

 
 

By (4). Hence 

                                 min , ,
ny R

x y
t s L u y s u x t

t s

   
    

  
                           …(5) 

Lemma 2: (Lipschitz continuity) 

The function u is Lipschitz continuous in  0,nR   , and  u g  on  0nR t  . 

Proof: Fix ˆ0, , nt x x R  . Choose
ny R such that 

                                                               ,
x y

tL g y u x t
t

 
  

 
                             ….(6) 

Then 

                                  
ˆ

ˆ, , inf
z

x z x y
u x t u x t tL g z tL g y

t t

      
        

    
 

                                                              ˆ ˆg x x y g y Lip g x x       

Hence  

                                                             ˆ ˆ, ,u x t u x t Lip g x x    

and, interchanging the roles of x̂ and x , we find 

                                                            ˆ ˆ, ,u x t u x t Lip g x x                                 … (7) 
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Now select nx R , t>0. Choosing y x  in (*), we discover 

                                                          , 0u x t tL g x                                                     …(8) 

Furthermore,  

                            , min
ny R

x y
u x t tL g y

t

   
   

  
 

                                          min
ny R

x y
g x Lip g x y tL

t

   
      

  
 

                                             max
nz R

g x t Lip g z L z


                  
x y

z
t

 
 

 
 

                                       
  

  
0,

max max .
nw B Lip g z R

g x t w z L z
 

                            

                                        
  0,

max
B Lip g

g x t H   

This inequality and (8) imply 

                                                   ,u x t g x Ct   

For 

                                            C:=  
  0,

max 0 , max
B Lip g

L H
 
 
 

                                      … (9) 

Finally select ˆ,0nx R t t   . Then     .,Lip u t Lip g  by (7) above. Consequently Lemma 1 and 

calculations like those employed in step 2 above imply 

                                                    ˆ ˆ, ,u x t u x t C t t    

For the constant C defined by (9). 

Theorem:  Solving the Hamilton-Jacobi equation 

 Suppose , 0nx R t  , and u defined by the Hopf-Lax formula 

   , min
ny R

x y
u x t tL g y

t

   
   

  
  

is differentiable at a point    , 0,nx t R   . Then 

                                                                               , , 0tu x t H Du x t  . 
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Proof: Fix , 0nq R h  . Owing to Lemma 1, 

                              , min ,
ny R

x hq y
u x hq t h hL u y t

h

    
     

  
 

                                                            ,hL q u x t  . 

Hence 

                                                   
   

 
, ,u x hq t h u x t

L q
h

  
 . 

Let 0h  , to compute 

                                                      . , ,tq Du x t u x t L q  . 

This inequality is valid for all
nq R , and so 

                            , , , max . , 0
nt t

q R
u x t H Du x t u x t q Du x t L q



                                …(10) 

The first equality holds since *H L . 

Now choose z such that    ,
x z

u x t tL g z
t

 
  

 
. Fix h>0 and set , 1

s s
s t h y x z

t t

 
     

 
. 

Then 
x z y z

t s

 
 , and thus 

                                               , ,
x z y z

u x t u y s tL g z sL g z
t s

      
        

    
 

                                                                         
x z

t s L
t

 
   

 
 

That is, 

                                            

 , 1 ,
h h

u x t u x z t h
t t x z

L
h t

  
     

      
 

 

Let 0h  to compute 

                                               . , ,t

x z x z
Du x t u x t L

t t

  
   

 
 

Consequently 

                                          , , , max . ,
nt t

q R
u x t H Du x t u x t q Du x t L q



     

                                                                           
   , . ,

0

t

x z x z
u x t Du x t L

t t

  
    

 



 

This inequality and (10) complete the proof. 
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Lemma 3: (Semiconcavity) 

 Suppose there exists a constant C such that 

                                                        
2

2g x z g x g x z C z                                                  (11) 

for all , nx z R . Define u by the Hopf-Lax formula (*). Then 

                                                         
2

, 2 , ,u x z t u x t u x z t C z      

for all , , 0nx z R t  . 

Remark: We say g is semiconcave provided (11) holds. It is easy to check (11) is valid if g is 2C  and

2sup
nR

D g  . Note that g is semiconcave if and only if the mapping  
2

2

C
x g x x  is concave for some 

constant C. 

Proof: Choose
ny R  so that    ,

x y
u x t tL g y

t

 
  

 
. Then putting y z  and y z in the Hopf-Lax 

formulas for  ,u x z t and  ,u x z t , we find 

                                         , 2 , ,u x z t u x t u x z t     

                                                            2
x y x y

tL g y z tL g y
t t

        
          

      
 

                                                                       
x y

tL g y z
t

   
    

  
 

                                                             2g y z g y g y z      

                                                        
2

C z ,        by (11) 

Definition: A 2C convex function : nH R R is called uniformly convex(with constant 0  ) if 

   (12)                                             
2

, 1
i j

n

p p i j

i j

H p    


                    for all , np R                      

We now prove that even if g is not semi-concave, the uniform convexity of H forces u to become semi-

concave for times t>0: it is a kind of mild regularizing effect for the Hopf-Lax solution of the initial- value 

problem. 
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Lemma 4: (Semi-concavity Again) 

Suppose that H is uniformly convex (with constant ) and u is defined by the Hopf-Lax formula. Then 

                                               
21

, 2 , ,u x z t u x t u x z t z
t

      

for all , , 0nx z R t  . 

Proof: We note first using Taylor’s formula that (12) implies 

                                               
21 2

1 2 1 2

1 1

2 2 2 8

p p
H H p H p p p

 
    

 
                            (13) 

Next we claim that for the Lagrangian L, we have estimate 

                                               
21 2

1 2 1 2

1 1 1

2 2 2 8

q q
L q L q L q q



 
    

 
                                 (14) 

For all 1 2, nq q R . Verification is left as an exercise. 

Now choose y so that    ,
x y

u x t tL g y
t

 
  

 
. Then using the same value of y in the Hopf-Lax formulas 

for  ,u x z t and  ,u x z t , we calculate 

                               , 2 , ,u x z t u x t u x z t     

                                                 2
x z y x y

tL g y tL g y
t t

         
         

      
 

                                                              
x z y

tL g y
t

    
   

  
 

                                             
1 1

2
2 2

x z y x z y x y
t L L L

t t t

           
        

      
 

                                            

2
21 2 1

2
8

z
t z

t t 
  , 

The next-to-last inequality following from (14). 

Theorem:  Suppose , 0nx R t  , and u defined by the Hopf-Lax formula is differentiable at a point

   , 0,nx t R   . Then 

                                                , , 0tu x t H Du x t   
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Proof: Fix , 0nq R h  and using Lemma (1), then we have 

                                                  , min ,
ny R

x hq y
u x hq t h hL u y t

h

    
     

  
 

                                                                             ,hL q u x t   

Hence 

                                             
   

 
, ,u x hq t h u x t

L q
h

  
  

Let 0h  , to compute 

                                                   . , ,tq Du x t u x t L q              for all
nq R  

and therefore 

                                                          , , , max . , 0
nt t

q R
u x t H Du x t u x t q Du x t L q



      

The first equality holds since *H L  

Now choose z such that 

                                                   ,
x z

u x t tL g z
t

 
  

 
 

Fix h>0 and set 

                                                , 1
s s

s t h y x z
t t

 
     

 
 

Then                                       
x z y z

t s

 
  

and 

                                                        , ,
x z y z

u x t u y s tL g z sL g z
t s

      
        

    
 

                                                                              
x z

t s L
t

 
   

 
 

                                              

 , 1 ,
h h

u x t u x z t h
t t x z

L
h t

  
     

      
 

 

Let 0h  to compute 
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                                                   . , ,t

x z x z
Du x t u x t L

t t

  
   

 
 

Consequently 

                                                          , , , max . ,
nt t

q R
u x t H Du x t u x t q Du x t L q



     

                                                                                        
   , . ,

0

t

x z x z
u x t Du x t L

t t

  
    

 



 

Hence                                         , , 0tu x t H Du x t   

5 .7 Weak Solutions and Uniqueness 

Definition: We say that a Lipschitz Continuous function  : 0,nu R R   is a weak solution of the 

initial-value problem 

(15)                                                   
   

 

0 0,

0

n

t

n

u H Du in R

u g on R t

    


  
 

provided 

(a)    ,0u x g x           nx R  

(b)         , , 0 . . , 0,n

tu x t H Du x t for a e x t R      

(c)      
21

, , , 1u x z t zu x t u x z t c z
t

 
      

 
 

for some constant 0c  and all , , 0nx z R t  . 

Theorem:  Uniqueness of Weak Solution 

 Assume H is 2C and satisfies  
lim
p

H is convex and

H p

p





 


 and : ng R R
 is Lipschitz continuous. Then there 

exists at most one weak solution of the initial-value problem (15). 

Proof: Suppose thatu andu are two weak solutions of (15) and write :w u u  . 

Observe now at any point  ,y s where bothu andu are differentiable and solve our PDE, we have 

                                  , , ,t t tw y s u y s u y s   
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1

0

, ,

, 1 ,

H Du y s H Du y s

d
H rDu y s r Du y s dr

dr

  

   
 

                                                       
1

0

, 1 , . , ,DH rDu y s r Du y s dr Du y s Du y s      

                                              : , . ,b y s Dw y s   

Consequently 

                                          . 0tw b Dw      a.e.                                           … (16) 

Write  : 0v w  , where  : 0,R  
 
is a smooth function to be selected later. We multiply(16) by

 ' w to discover 

                                                 . 0tv b Dv            a.e.                                       …(17) 

Now choose 0  and define : * , : *u u u u 

    , where  is the standard mollifier in the x and t 

variables. Then we have 

                                                  ,Du Lip u Du Lip u   ,                     … (18) 

and                   

                                          ,Du Du Du Du     a.e., as 0                           …(19) 

Furthermore inequality(c) in the definition of weak solution implies 

                                               
2 2 1

, 1D u D u C I
s

   
  

 
 

For an appropriate constant C and all 0  , , 2ny R s   . Verification is left as an exercise. 

Write 

                                           
1

0

, : , 1 ,b y s DH rDu y s r Du y s dr 

                       … (20) 

Then (17) becomes 

                                          . .tv b Dv b b Dv                   a.e. 

Hence 

                                          .tv div vb divb v b b Dv         a.e.                                  …(21) 
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Now 

                        
1

, 10

1 1
k l l k l k

n

p p x x x x

k l

divb H rDu r Du ru r u dr   




    
   

                               
1

1C
s

 
  

 
                                                 …(22) 

For some constant C, in view of (17) and (19). Here we note that H convex implies 2 0D H  . 

Fix 0 0, 0nx R t  , and set 

                                 : max maxR DH p p Lip u                                             …(23) 

Define also the cone 

                                   0 0 0: , 0 ,C x t t t x x R t t       

Next write 

                                     
  0 0,

,
B x R t t

e t v x t dx


   

and compute for a.e. t>0: 

                            
     0 0 0 0, ,

t

B x R t t B x R t t

e t v dx R vdS
  

    

                                       
  

 
0 0,

.
B x R t t

div vb divb v b b Dvdx  



      

                                                
  0 0,B x R t t

R vdS
 

                           by (21) 

                                      
  0 0,

.
B x R t t

v b v R dS

 

    

                                                     
  0 0,

.
B x R t t

divb v b b Dvdx 



    

                                          
  0 0,

.
B x R t t

divb v b b Dvdx 



                       by (17),  (20) 

                                         
  0 0,

1
1 .

B x R t t

C e t b b Dvdx
t
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by (22). The last term on the right hand side goes to zero as 0  , for a.e. 0 0t  , according to (17), (18) 

and the Dominated Convergence Theorem. 

Thus 

     (24)                                             
1

1e t C e t
t

 
  

 
      for a.e. 00 t t   

Fix 0 r t   and choose the function  z to equal zero if 

                                                            z Lip u Lip u     

and to be positive otherwise. Since u u on  0nR t  , 

                                                    0v w u u        at t   

Thus   0e   . Consequently Gronwall’s inequality and (24) imply 

                                                               

1
1

0

r

C dS
s

e r e e

 
 

 
   

Hence 

                                                   u u Lip u Lip u         on   0 0,B x R t r  

This inequality is valid for all 0  , and sou u in   0 0,B x R t r . Therefore, in particular,

   0 0 0 0, ,u x t u x t .     




